Spatial Analysis of Vegetation Index in Ambon City Center Area, Indonesia using Sentinel-2 Satellite Imagery in Google Earth Engine
DOI:
https://doi.org/10.69930/fsst.v2i1.365Keywords:
Ambon City, Google Earth Engine, Spatial Analysis, Vegetation IndexAbstract
This study analyzed the impact of urbanization on vegetation cover in Ambon City using Google Earth Engine (GEE) technology and the NDVI index. The methods used include Sentinel-2 image data processing and field validation at 40 sample points conducted in Google Earth Engine. The analysis revealed that the Non-vegetation area has a percentage area of 29.25%, Sparse vegetation area of 19.89%, Medium Vegetation area of 21.80% and Dense Vegetation area of 29.06% of the total area of Ambon City center. The results of this study emphasize the urgent need for conservation policies and utilization of monitoring technology in the planning of sustainable green open space in Ambon City Center.
References
Ahmad, B., Najar, M. B., & Ahmad, S. (2024). Analysis of LST, NDVI, and UHI patterns for urban climate using Landsat-9 satellite data in Delhi. Journal of Atmospheric and Solar-Terrestrial Physics, 265, 106359. https://doi.org/10.1016/j.jastp.2024.106359
Aires, U. R. V., da Silva, D. D., Moreira, M. C., Ribeiro, C. A. A. S., & Ribeiro, C. B. de M. (2020). The Use of the Normalized Difference Vegetation Index to Analyze the Influence of Vegetation Cover Changes on the Streamflow in the Manhuaçu River Basin, Brazil. Water Resources Management, 34(6), 1933–1949. https://doi.org/10.1007/s11269-020-02536-1
Aldiansyah, S., Setiyo, D., & Ningsih, W. (2024). Spatial Temporal Mapping Of Vegetation Cover Indices Using Sentinel-2 Multispectral Instrument In Unaaha City. Majalah Ilmiah Globe, 26(1), 1–10.
Amiri, M., & Pourghasemi, H. R. (2022). Mapping the NDVI and monitoring of its changes using Google Earth Engine and Sentinel-2 images. In Computers in Earth and Environmental Sciences (pp. 127–136). Elsevier. https://doi.org/10.1016/B978-0-323-89861-4.00044-0
Aryal, J., Sitaula, C., & Aryal, S. (2022). NDVI Threshold-Based Urban Green Space Mapping from Sentinel-2A at the Local Governmental Area (LGA) Level of Victoria, Australia. Land, 11(3), 351. https://doi.org/10.3390/land11030351
Boori, M. S., Choudhary, K., & Kupriyanov, A. V. (2020). Crop growth monitoring through Sentinel and Landsat data based NDVI time-series. Computer Optics, 44(3). https://doi.org/10.18287/2412-6179-CO-635
BPS. (2023). Kota Sorong Dalam Angka 2023. BPS Kota Sorong.
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031
Heinrich Rakuasa. (2024). Use of geographic information systems to analyze the distribution of water catchment areas in Ambon City, Indonesia. Journal of Environment and Geography Education, 1(2), 146-155. https://doi.org/https://doi.org/10.61511/jegeo.v1i2.2024.1200
Lasaponara, R., Abate, N., Fattore, C., Aromando, A., Cardettini, G., & Di Fonzo, M. (2022). On the Use of Sentinel-2 NDVI Time Series and Google Earth Engine to Detect Land-Use/Land-Cover Changes in Fire-Affected Areas. Remote Sensing, 14(19), 4723. https://doi.org/10.3390/rs14194723
Latue, P. C., & Rakuasa, H. (2024). Spatial Temporal Analysis Of Land Surface Temperature Changes In Ambon Island From Landsat 8 Image Data Using Geogle Earth Engine. Journal of Data Analytics, Information, and Computer Science, 1(3), 134–142. https://doi.org/10.59407/jdaics.v1i3.751
Narra, M., Reddy, H. V., Gaddam, V. K., Nandhuri, S. R., Vallepu, T., & Sumath, S. (2024). Application of Google Earth Engine NDVI Trend to Study Yield of Sugarcane Crop Using Sentinel 2 Data (pp. 309–342). https://doi.org/10.4018/979-8-3693-2337-3.ch011
Onisimo Muntaga, L. K. (2019). Google Earth Engine Applications. Remotesensing, 11–14. https://doi.org/10.3390/rs11050591
Pflumm, L., Kang, H., Wilting, A., & Niedballa, J. (2025). GEE‐PICX: generating cloud‐free Sentinel‐2 and Landsat image composites and spectral indices for custom areas and time frames – a Google Earth Engine web application. Ecography. https://doi.org/10.1111/ecog.07385
Rakuasa, H., & Budnikov, V. V. (2025). Spatial Analysis of Vegetation Density Using MSARVI Algorithm and Sentinel-2A Imagery in Ternate City, Indonesia. Journal of Engineering and Science Application, 2(1), 36–41. https://doi.org/10.69693/jesa.v2i1.14
Rakuasa, H., Khromykh, V. V, & Latue, P. C. (2025). Spatial Analysis of the Relationship between Vegetation Index and Land Surface Temperature in Ternate Island, Indonesia. BIOPENDIX: Jurnal Biologi, Pendidikan Dan Terapan, 12(1), 48–57. https://doi.org/10.30598/biopendixvol12issue1page48-57
Rakuasa, H., & Sihasale, D. A. (2023). Analysis of Vegetation Index in Ambon City Using Sentinel-2 Satellite Image Data with Normalized Difference Vegetation Index (NDVI) Method based on Google Earth Engine. Journal of Innovation Information Technology and Application (JINITA), 5(1), 74–82. https://doi.org/10.35970/jinita.v5i1.1869
Rakuasa, H., Sihasale, D. A., Somae, G., & Latue, P. C. (2023). Prediction of Land Cover Model for Central Ambon City in 2041 Using the Cellular Automata Markov Chains Method. Jurnal Geosains Dan Remote Sensing, 4(1), 1–10. https://doi.org/10.23960/jgrs.2023.v4i1.85
Richards, D. R., & Belcher, R. N. (2019). Global Changes in Urban Vegetation Cover. Remote Sensing, 12(1), 23. https://doi.org/10.3390/rs12010023
Rifai, A., Rakuasa, H., Halim, Latue, P. C., Sarfan, R., & Tehupelasury, S. (2025). Spatial Transformation of Physical Change of Built-up Land in Ambon City Center, Indonesia, Period 1940-2025. Asian Journal of Environmental Research, 2(1), 67–81. https://doi.org/10.69930/ajer.v2i1.319
Zhang, X., Zhao, T., Xu, H., Liu, W., Wang, J., Chen, X., & Liu, L. (2024). GLC_FCS30D: the first global 30 m land-cover dynamics monitoring product with a fine classification system for the period from 1985 to 2022 generated using dense-time-series Landsat imagery and the continuous change-detection method. Earth System Science Data, 16(3), 1353–1381. https://doi.org/10.5194/essd-16-1353-2024