Photocatalytic Degradation of Lignin using TiO2 from Ilmenite Prepared by Microwave Method

Authors

  • Irwan Irwan Institut Teknologi dan Kesehatan Avicenna Kendari
  • Andri Jahir Maindi Universitas Halu Oleo
  • Muh Edihar Institut Sains Teknologi dan Kesehatan ‘Aisyiyah Kendari
  • Muhammad Nurdin Universitas Halu Oleo
  • La Ode Agus Salim Institut Sains Teknologi dan Kesehatan ‘Aisyiyah Kendari

DOI:

https://doi.org/10.69930/ajer.v1i1.7

Keywords:

Photocatalyst, TiO2, Ilmenite, lignin, degradation

Abstract

This study investigates the photocatalytic degradation of lignin using TiO2 extracted from ilmenite through a microwave-assisted method. Characterization of the iron sand, which serves as the source of ilmenite, was conducted using X-ray fluorescence spectroscopy (XRF) and Energy Dispersive X-ray Spectroscopy (EDX). The XRF analysis revealed that the iron sand primarily consists of Fe and TiO2, with minor impurities such as Al2O3, MgO, and SiO2. After extraction, the iron mineral content increased significantly, while impurities decreased. EDX analysis confirmed the presence of Fe, O, and Ti elements in the iron sand sample, originating from various iron oxide phases. Subsequent degradation tests on lignin with varying microwave heating durations of ilmenite showed that a 90-minute heating duration achieved the highest lignin degradation percentage of 56.69%. This suggests that the optimum heating time for ilmenite is crucial for maximizing its photocatalytic activity. Overall, the findings highlight the potential of microwave-prepared TiO2 from ilmenite for efficient lignin degradation, with implications for environmental remediation and industrial applications.

References

Nurdin M, Zaeni A, Maulidiyah, Natsir M, Bampe A, Wibowo D. Comparison of conventional and microwave-assisted extraction methods for TiO2 recovery in mineral sands. Orient J Chem. 2016;32(5):2713–21.

Nurdin M, Maulidiyah, Watoni AH, Abdillah N, Wibowo D. Development of extraction method and characterization of TiO2 mineral from ilmenite. Int J ChemTech Res. 2016;9(4):483–91.

Natsir M, Tuwo Ma, Suyuti N, Hafid H, Ansharullah A, Sutrizal Laode, et al. Photodegradation of Lignin by TiO 2-Ilmenite for Natural Pesticide Material. Asian J Chem. 2018;30(7).

Maulidiyah M, Mardhan FT, Muzuni, Ansharullah, Natsir M, Wibowo D, et al. Lignin black liquor degradation on oil palm empty fruit bunches using ilmenite (FeO.TiO2) and its activity as antibacterial. J Phys Conf Ser. 2019;1242(1).

Irwan I, Jumbi IS, Alimin A, Ratna R, Nohong N, Maulidiyah M, et al. Electrochemical Photodegradation of Methyl Red using Reduction Graphene Oxide of Palm Shells Supported TiO2 Nanoparticle under Visible Irradiation. Anal Bioanal Electrochem. 2023;15(7):556–67.

Nurdin M, Maulidiyah M, Watoni AH, Armawansa A, Salim LOA, Arham Z, et al. Nanocomposite design of graphene modified TiO2 for electrochemical sensing in phenol detection. Korean J Chem Eng. 2022;39(1):209–15.

Nurdin M, Arham Z, Irna WO, Maulidiyah M, Kurniawan K, Irwan I, et al. Enhanced-charge transfer over molecularly imprinted polyaniline modified graphene/TiO2 nanocomposite electrode for highly selective detection of fipronil insecticide. Mater Sci Semicond Process. 2022;151:106994.

Nurdin M, Dali N, Irwan I, Maulidiyah M, Arham Z, Ruslan R, et al. Selectivity Determination of Pb2+ Ion Based on TiO2-Ionophores BEK6 as Carbon Paste Electrode Composite. Anal Bioanal Electrochem. 2018;10(12):1538–47.

Lee R Bin, Lee KM, Lai CW, Pan G-T, Yang TCK, Juan JC. The relationship between iron and Ilmenite for photocatalyst degradation. Adv Powder Technol. 2018;29(8):1779–86.

Supriyatna YI, Astuti W, Sumardi S, Prasetya A, Ginting LIB, Irmawati Y, et al. Correlation of Nano Titanium Dioxide Synthesis and the Mineralogical Characterization of Ilmenite Ore as Raw Material. Int J Technol. 2021;12(4).

Haouti R El, Anfar Z, Et-Taleb S, Benafqir M, Lhanafi S, Alem N El. Removal of heavy metals and organic pollutants by a sand rich in iron oxide. Euro-Mediterranean J Environ Integr. 2018;3:1–11.

Kawamata Y, Ishimaru H, Yamaguchi K, Yoshikawa T, Koyama Y, Nakasaka Y, et al. Catalytic cracking of lignin model compounds and degraded lignin dissolved in inert solvent over mixed catalyst of iron oxide and MFI zeolite for phenol recovery. Fuel Process Technol. 2020;197:106190.

Vo TA, Koo Y, Kim J, Kim S-S. Non-precious metal catalysts supported by activated carbon and TiO2–SiO2: Facile preparation and application for highly effective hydrodeoxygenation of syringol–a lignin-derived model compound. J Ind Eng Chem. 2023;122:138–51.

Lopes TLC, de Cássia Siqueira-Soares R, de Almeida GHG, de Melo GSR, Barreto GE, de Oliveira DM, et al. Lignin-induced growth inhibition in soybean exposed to iron oxide nanoparticles. Chemosphere. 2018;211:226–34.

Insyani R, Kim M-K, Choi J-W, Yoo C-J, Suh DJ, Lee H, et al. Selective hydrodeoxygenation of biomass pyrolysis oil and lignin-derived oxygenates to cyclic alcohols using the bimetallic NiFe core-shell supported on TiO2. Chem Eng J. 2022;446:136578.

Downloads

Published

2024-04-04

How to Cite

Irwan, I., Maindi, A. J., Edihar, M., Nurdin, M., & Salim, L. O. A. (2024). Photocatalytic Degradation of Lignin using TiO2 from Ilmenite Prepared by Microwave Method. Asian Journal of Environmental Research, 1(1), 05–10. https://doi.org/10.69930/ajer.v1i1.7