Photoelectrocatalysis Activity TiO2/Ti electrode doped with N and Ni deposition for Congo Red Degradation

Authors

  • Muh Edihar Institut Sains Teknologi dan Kesehatan 'Asiyiyah Kendari
  • Irwan Irwan Institut Teknologi dan Kesehatan Avicenna Kendari
  • Andini Lidong Institut Sains Teknologi dan Kesehatan 'Aisyiyah Kendari

DOI:

https://doi.org/10.69930/ajer.v1i1.19

Keywords:

Congo Red; Electrode; Electrodeposition; Ni@N-TiO2/Ti; Sol-Gel

Abstract

The TiO2/Ti electrode was successfully synthesized by combining element N and metal Ni on the TiO2 matrix to degrade the organic compound Congo Red under UV-visible radiation. The aim of this study is to obtain Ni@N-TiO2/Ti electrodes and test their performance in degrading Congo Red dye under UV-visible light radiation. The Ni@N-TiO2/Ti electrode was prepared using the Sol-Gel and electrodeposition methods. The presence of nitrogen in N-TiO2 is determined by FTIR and detected at a wavelength of 1.064 cm1.  The analysis of UV-Vis DRS indicates an energy gap of 3.06 eV for N-TiO.  XRD analysis revealed anatase crystal structure formation and nickel's presence in the Ni@N-TiO2/Ti electrode detected at 2θ 52.8°.  The usage characteristics of linear sweep voltammetry indicate that the TiO2/Ti electrode is active under UV light, while the Ni@N-TiO2/Ti electrode is active under visible light. An electrode activity test using the multi-pulse amperometry method showed that the photoelectrocatalysis performance of Ni@N-TiO2/Ti under visible light radiation reached an ideal degradation rate of 36%.

References

Nurdin M, Maulidiyah M, Syahputra RA, Salim LOA, Wati I, Irwan I, et al. Degradation test of organic congo red compounds using Mn-TiO2/Ti electrode by photocatalytic under the uv-visible iradiation. In: Journal of Physics: Conference Series. 2021.

Muzakkar MZ, Maulidiyah M, Ningsi N, Salim LOA, Istiqamah RN, Musdalifah A, et al. High photoelectrocatalytic activity of selenium (Se) doped TiO2/Ti electrode for degradation of reactive orange 84. In: Journal of Physics: Conference Series. IOP Publishing Ltd; 2021.

Edihar M, Sri Yunita K. Photoelectrocatalytic Degradation of Organic Compound Congo Red Using TiO2/Ti Electrode. Vol. 1.: https://jurnal.istekaisyiyah.ac.id/

Zhou S, Li Z, Xu Y, Han Z, Wei S, Xu L. Effect of CQDs doping on the properties of RuO2–TiO2/Ti anode. Ceram Int. 2023 Sep 15;49(18):30656–66.

Niu Q, Gu X, Li L, Zhang Y nan, Zhao G. 3D CQDs-{001}TiO2/Ti photoelectrode with dominant {001} facets: Efficient visible-light-driven photoelectrocatalytic oxidation of organic pollutants and mechanism insight. Appl Catal B. 2020 Feb 1;261:118229.

Antoniou MG, Zhao C, O’Shea KE, Zhang G, Dionysiou DD, Zhao C, et al. CHAPTER 1. Photocatalytic Degradation of Organic Contaminants in Water: Process Optimization and Degradation Pathways. In Royal Society of chemistry; 2016. p. 1–34.

Xu J, Liang X, Fan X, Song Y, Zhao Z, Hua J, et al. Highly enhanced electrocatalytic activity of nano-TiO2/Ti membrane electrode for phenol wastewater treatment. Journal of Materials Science: Materials in Electronics. 2020 Aug 13;31(16):13511–20.

Jiang W, Cui H, Song Y. Electrochemical corrosion behaviors of titanium covered by various TiO2 nanotube films in artificial saliva. J Mater Sci. 2018 Nov 18;53(21):15130–41.

Döner A. Comparison of Corrosion Behaviors of Bare Ti and TiO2. Emerging Science Journal. 2019 Jul 30;3(4):235–40.

Bakhtiari-Zamani H, Saebnoori E, Bakhsheshi-Rad HR, Berto F. Corrosion and Wear Behavior of TiO2/TiN Duplex Coatings on Titanium by Plasma Electrolytic Oxidation and Gas Nitriding. Materials. 2022 Nov 22;15(23):8300.

Cheng X, Yu X, Xing Z, Yang L. Synthesis and characterization of N-doped TiO2 and its enhanced visible-light photocatalytic activity. Arabian Journal of Chemistry. 2016 Nov;9:S1706–11.

Chakraborty AK, Ganguli S, Sabur MA. Nitrogen doped titanium dioxide (N-TiO2): Electronic band structure, visible light harvesting and photocatalytic applications. Journal of Water Process Engineering. 2023 Oct;55:104183.

Khlyustova A, Sirotkin N, Kusova T, Kraev A, Titov V, Agafonov A. Doped TiO2 : the effect of doping elements on photocatalytic activity. Mater Adv. 2020;1(5):1193–201.

Zhang Y, Xu X. Machine Learning Band Gaps of Doped-TiO2 Photocatalysts from Structural and Morphological Parameters. ACS Omega. 2020 Jun 30;5(25):15344–52.

Du S, Lian J, Zhang F. Visible Light-Responsive N-Doped TiO2 Photocatalysis: Synthesis, Characterizations, and Applications. Transactions of Tianjin University. 2022 Feb 29;28(1):33–52.

Chakraborty AK, Ganguli S, Sabur MA. Nitrogen doped titanium dioxide (N-TiO2): Electronic band structure, visible light harvesting and photocatalytic applications. Journal of Water Process Engineering. 2023 Oct;55:104183.

Basavarajappa PS, Patil SB, Ganganagappa N, Reddy KR, Raghu A V., Reddy ChV. Recent progress in metal-doped TiO2, non-metal doped/codoped TiO2 and TiO2 nanostructured hybrids for enhanced photocatalysis. Int J Hydrogen Energy. 2020 Mar;45(13):7764–78.

Ibrahim NS, Leaw WL, Mohamad D, Alias SH, Nur H. A critical review of metal-doped TiO2 and its structure–physical properties–photocatalytic activity relationship in hydrogen production. Int J Hydrogen Energy. 2020 Oct;45(53):28553–65.

Mezzat F, Zaari H, El Kenz A, Benyoussef A. Effect of metal and non metal doping of TiO2 on photocatalytic activities: ab initio calculations. Opt Quantum Electron. 2021 Feb 22;53(2):86.

Raguram T, Rajni KS. Effect of Ni doping on the characterization of TiO2 nanoparticles for DSSC applications. Journal of Materials Science: Materials in Electronics. 2021 Jul 15;32(13):18264–81.

Lei L, Sang L, Gao Y. Pulse electrodeposition of Ag, Cu nanoparticles on TiO2 nanoring/nanotube arrays for enhanced photoelectrochemical water splitting. Advanced Powder Technology. 2022 Mar;33(3):103511.

Ullattil SG, Periyat P. Sol-Gel Synthesis of Titanium Dioxide. In 2017. p. 271–83.

Watoni AH, Yanti NA, Marlini S, Muzakkar MZ, Maulidiyah M, Irwan I, et al. Synthesis of TiO2-Ag composite through ultrasonic batch cleaning technique as a candidate for antifungal agent Phytophthora palmivora. J Phys Conf Ser. 2021 Jan 1;1763(1):012070.

Liang F, Zhang J, Zheng L, Tsang CK, Li H, Shu S, et al. Selective electrodeposition of Ni into the intertubular voids of anodic TiO2 nanotubes for improved photocatalytic properties. J Mater Res. 2013 Feb 14;28(3):405–10.

Zhang H, Wang X, Wang J, Chen Q, Huang H, Huang L, et al. UV–visible diffuse reflectance spectroscopy used in analysis of lignocellulosic biomass material. Wood Sci Technol. 2020 Jul 27;54(4):837–46.

Muzakkar MZ, Maulidiyah M, Ningsi N, Salim LOA, Istiqamah RN, Musdalifah A, et al. High photoelectrocatalytic activity of selenium (Se) doped TiO2 /Ti electrode for degradation of reactive orange 84. J Phys Conf Ser. 2021 May 1;1899(1):012046.

Xu X, Yang Y, Miao Y, Liu K, Lv F, Zhou L, et al. Photocatalytic Bacterial Inactivation of Acinetobacter baumannli on Cu/TiO2/Diatomite. Catalysts. 2022 Oct 12;12(10):1217.

Balakrishnan M, John R. Impact of Ni metal ion concentration in TiO2 nanoparticles for enhanced photovoltaic performance of dye sensitized solar Cell. Journal of Materials Science: Materials in Electronics. 2021 Mar 25;32(5):5295–308.

Li Q, Wang D. Preparation of Ni loaded TiO2 photocatalyst for photodegradation of phenanthrene in water and soil. Int J Electrochem Sci. 2022 Aug;17(8):220815.

Unal FA, Ok S, Unal M, Topal S, Cellat K, Şen F. Synthesis, characterization, and application of transition metals (Ni, Zr, and Fe) doped TiO2 photoelectrodes for dye-sensitized solar cells. J Mol Liq. 2020 Feb;299:112177.

Downloads

Published

2024-04-04

How to Cite

Edihar, M., Irwan, I., & Lidong, A. (2024). Photoelectrocatalysis Activity TiO2/Ti electrode doped with N and Ni deposition for Congo Red Degradation. Asian Journal of Environmental Research, 1(1), 15–23. https://doi.org/10.69930/ajer.v1i1.19