Functional Nanocellulose Derivatives for Global Environmental Solutions
DOI:
https://doi.org/10.69930/ajer.v1i3.241Keywords:
Nanocellulose, NCT, environmental, sustainability water purificationAbstract
Nanocellulose, a sustainable and biodegradable material derived from natural cellulose, holds immense potential for addressing global environmental challenges. This article reviews the production methods, structural modifications, and applications of nanocellulose derivatives in environmental contexts, emphasizing their role in water purification, pollutant adsorption, and renewable energy solutions. The systematic literature review highlights the unique properties of nanocellulose, such as high mechanical strength, large specific surface area, and tunable chemical functionalities, which enable its use in various industrial, biomedical, and environmental applications. Results indicate that nanocellulose-based materials outperform conventional materials in efficiency and sustainability, particularly in water treatment and biodegradable packaging. Despite its advantages, challenges remain, including production costs, dispersibility in polymer matrices, and stability under high humidity. These limitations necessitate further research and collaborative innovation to enhance its applicability and affordability.
References
Peter S, Lyczko N, Gopakumar D, Maria H, Nzihou A, Thomas S. Nanocellulose and its derivative materials for energy and environmental applications. Journal of Materials Science. 2022;57(13):6835–80.
Jaffar S, Saallah S, Misson M, Siddiquee S, Roslan J, Saalah S, et al. Recent development and environmental applications of nanocellulose-based membranes. Membranes. 2022;12(3):287.
Vilarinho F, Sanches-Silva A, Vaz M, Farinha J. Nanocellulose in green food packaging. Critical Reviews in Food Science and Nutrition. 2017;58(9):1526–37.
Silva F, Dourado F, Gama M, Poças M. Nanocellulose bio-based composites for food packaging. Nanomaterials. 2020;10(10).
Huo Y, Liu Y, Xia M, Du H, Lin Z, Li B, et al. Nanocellulose-based composite materials used in drug delivery systems. Polymers. 2022;14(13):2648.
Zhou S, Nyholm L, Strömme M, Wang Z. cladophora cellulose: unique biopolymer nanofibrils for emerging energy, environmental, and life science applications. Accounts of Chemical Research. 2019;52(8):2232–43.
Shanmugam K. Nanocellulose as sustainable bio-nanomaterial for packaging and biomedical applications. Scientific and Social Research. 2024;6(2):57–67.
Trache D, Tarchoun A, Derradji M, Hamidon T, Masruchin N, Brosse N, et al. Nanocellulose: from fundamentals to advanced applications. Frontiers in Chemistry. 2020;8.
Ma C. Nanocellulose composites—properties and applications. Paper and Biomaterials. 2018;3(2):51–63.
Kim J, Kim D, Lee J, Zhai L. Effect of wet spinning and stretching to enhance mechanical properties of cellulose nanofiber filament. International Journal of Precision Engineering and Manufacturing-Green Technology. 2019;6(3):567–75.
Bačáková L, Pajorová J, Bačáková M, Skogberg A, Kallio P, Kolářová K, et al. Versatile application of nanocellulose: from industry to skin tissue engineering and wound healing. Nanomaterials. 2019;9(2):164.
Zhou Y, Fu S, Zheng L, Zhan H. Effect of nanocellulose isolation techniques on the formation of reinforced poly(vinyl alcohol) nanocomposite films. Express Polymer Letters. 2012;6(10):794–804.
Diamanti M, Tedeschi C, Taccia M, Torri G, Massironi N, Tognoli C, et al. Suspended multifunctional nanocellulose as additive for mortars. Nanomaterials. 2022;12(7):1093.
Tahir D, Karim M, Hu H, Naseem S, Rehan M, Ahmad M, et al. Sources, chemical functionalization, and commercial applications of nanocellulose and nanocellulose-based composites: a review. Polymers. 2022;14(21):4468.
Bárta J. Effect of a nanocellulose addition on the mechanical properties of paper. Polymers. 2023;16(1):73.
Thomas B, Raj M, B A, H R, Joy J, Moores A, et al. Nanocellulose, a versatile green platform: from biosources to materials and their applications. Chemical Reviews. 2018;118(24):11575–625.
Wiegand C, Moritz S, Heßler N, Kralisch D, Wesarg F, Müller F, et al. Antimicrobial functionalization of bacterial nanocellulose by loading with polihexanide and povidone-iodine. Journal of Materials Science Materials in Medicine. 2015;26(10).
Patil S. Surface modification of nano cellulose: the path to advanced uses of smart and sustainable bio-material. GSC Advanced Research and Reviews. 2023;17(1):127–37.
Golmohammadi H, Morales‐Narváez E, Naghdi T, Merkoçi A. Nanocellulose in sensing and biosensing. Chemistry of Materials. 2017;29(13):5426–46.
Hakimi N, Lee S, Lum W, Mohamad S, Al-Edrus S, Park B, et al. Surface modified nanocellulose and its reinforcement in natural rubber matrix nanocomposites: a review. Polymers. 2021;13(19):3241.
Aulia F, Gea S. STUDI PENYEDIAAN NANOKRISTAL SELULOSA DARI TANDAN KOSONG SAWIT (TKS). 2013;1(2).
George J, S N S. Cellulose nanocrystals: synthesis, functional properties, and applications. NSA. 2015 Nov;45.
Hartati N, Kurniawan E, Trisna M, Noviarni I. Isolasi, Karakterisasi, dan Aplikasi Nanokristal Selulosa : Review. 1.
Blanco A, Monte MC, Campano C, Balea A, Merayo N, Negro C. Nanocellulose for Industrial Use. In: Handbook of Nanomaterials for Industrial Applications [Internet]. Elsevier; 2018 [cited 2024 Jun 27]. p. 74–126. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128133514000055
Burhani D, Voet VSD, Folkersma R, Maniar D, Loos K. Potential of Nanocellulose for Microplastic removal: Perspective and challenges. Tetrahedron Green Chem. 2024 Jun;3:100045.
Tripathi A, Ago M, Khan S, Rojas O. Heterogeneous acetylation of plant fibers into micro- and nanocelluloses for the synthesis of highly stretchable, tough, and water-resistant co-continuous filaments via wet-spinning. Acs Applied Materials & Interfaces. 2018;10(51):44776–86.
Барбаш В, Yashchenko O, Vasylieva O. Preparation and application of nanocellulose from miscanthus × giganteus to improve the quality of paper for bags. Sn Applied Sciences. 2020;2(4).
Ioelovich M. Distinctive features of cellulose nanocrystallites. Chemistry of Plant Raw Material. 2024;2:109–17.
Shaikh H, Anis A, Poulose A, Al‐Zahrani S, Madhar N, Alhamidi A, et al. Isolation and characterization of alpha and nanocrystalline cellulose from date palm (phoenix dactylifera l.) trunk mesh. Polymers. 2021;13(11):1893.
Aravind T, Ashraf M, Rajesh A, Ahalya N, Rawat M, Uma B, et al. Study of progress on nanocrystalline cellulose and natural fiber reinforcement biocomposites. Journal of Nanomaterials. 2022;1–16.
Pan C, Han Y, Lu J. Design and Optimization of Lattice Structures: A Review. 2020.
Poothanari M, Schreier A, Missoum K, Bras J, Leterrier Y. Photocured nanocellulose composites: recent advances. Acs Sustainable Chemistry & Engineering. 2022;10(10):3131–49.
Khan A, Jawaid M, Kian L, Khan A, Asiri A. Isolation and production of nanocrystalline cellulose from conocarpus fiber. Polymers. 2021;13(11):1835.
Rana AK, Frollini E, Thakur VK. Cellulose nanocrystals: pretreatments, preparation strategies, and surface functionalization. Int J Biol Macromol. 2021;182.
Dai H, Wu J, Zhang H, Chen Y, Ma L, Huang H, et al. Recent advances on cellulose nanocrystals for Pickering emulsions: development and challenge, Trends Food Sci. Technol. 2020;102:16–29.
Lee S, Doherty T, Linhardt R, Dordick J. Ionic liquid‐mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnology and Bioengineering. 2008;102(5):1368–76.
Suzuki T, Kono K, Shimomura K, Minami H. Preparation of cellulose particles using an ionic liquid. Journal of Colloid and Interface Science. 2014;418:126–31.
Liu Y, Liu H, Shen Z. Nanocellulose Based Filtration Membrane in Industrial Waste Water Treatment: A Review. 2021.
Amirulhakim H, Juwono AL, Roseno S. Isolation and characterization of Cellulose Nanofiber.
Kaur P, Sharma N, Munagala M, Rajkhowa R, Aallardyce B, Shastri Y, et al. Nanocellulose: resources, physio-chemical properties, current uses and future applications. Frontiers in Nanotechnology. 2021;3.
Pennells J, Godwin ID, Amiralian N, Martin DJ. Trends in the production of cellulose nanofibers from non-wood sources. Cellulose. 2020;27(2):575–93.
Abol-Fotouh D, Hassan MA, Shokry H, Roig A, Azab MS, Kashyout AEHB, et al.
Barbash VA, Yashchenko OV, O.A. Vasylieva, Preparation and properties of nanocellulose from miscanthus x giganteus. J Nanomater. 2019;1–8.
Klochko NP, Barbash VA, Klepikova KS, Kopach VR, Tyukhov II, Yashchenko OV, et al. Use of biomass for a development of nanocellulose-based biodegradable flexible thin film thermoelectric material. Sol Energy. 2020;201:21–7.
Achaby ME, Miri NE, Hannache H, Gmouh S, Trabadelo V, Aboulkas A, et al. Cellulose nanocrystals from Miscanthus fibers: insights into rheological, physico-chemical properties and polymer reinforcing ability. Cellulose. 2018;25(11):6603–19.
Hussin MH, Trache D, Chuin CTH, Fazita MRN, Haafiz MKM, Hossain M. Extraction of cellulose nanofibers and their eco-friendly polymer composites. In: Thomas S, Mishra RK, Asiri A, editors. Sustainable Polymer Composites and Nanocomposites (Inamuddin. Cham.; Switzerland: Springer; 2019. p. 653–91.
Jing S. The critical roles of water in the processing, structure, and properties of nanocellulose. Acs Nano. 2023;17(22):22196–226.
Das R. Nanocellulose preparation from diverse plant feedstocks, processes, and chemical treatments: a review emphasizing non-woods. Bioresources [Internet]. 2023;19(1). Available from: https://doi.org/10.15376/biores.19.1.das
Deville J, Rady A, Zhou H. Nanocellulose as a new degradable suspension additive for high-density calcium brines [Internet]. 2020. Available from: https://doi.org/10.2118/199318-ms
Foroughi F, Ghomi E, Dehaghi F, Borayek R, Ramakrishna S. A review on the life cycle assessment of cellulose: from properties to the potential of making it a low carbon material. Materials. 2021;14(4):714.
Varghese R, Cherian R, Chirayil C, Antony T, Kargarzadeh H, Thomas S. Nanocellulose as an avenue for drug delivery applications: a mini-review. Journal of Composites Science. 2023;7(6):210.
Kim M. Upcycling food by‐products: characteristics and applications of nanocellulose. Chemistry - An Asian Journal. 2024;19(6).
Saud A, Saleem H, Zaidi S. Progress and prospects of nanocellulose-based membranes for desalination and water treatment. Membranes. 2022;12(5):462.
Liljeström T, Kontturi K, Durairaj V, Tammelin T, Laurila T. Protein adsorption and its effects on electroanalytical performance of nanocellulose/carbon nanotube composite electrodes. Biomacromolecules. 2023;24(8):3806–18.
Hipeni A. Variation of nanocellulose reinforced recycled paper: effect on tensile strength. Journal of Chemical Engineering and Industrial Biotechnology. 2024;10(1):25–9.
Eichhorn S, Etale A, Wang J, Berglund L, Li Y, Cai Y, et al. Current international research into cellulose as a functional nanomaterial for advanced applications. Journal of Materials Science. 2022;57(10):5697–767.
Trivedi D. Potential applications of alpha nanocellulose from cow dung in biomedicine: a comprehensive review. International Journal of Pharmaceutical Quality Assurance. 2023;14(03):801–15.
Manimaran M. Critical assessment of the thermal stability and degradation of chemically functionalized nanocellulose-based polymer nanocomposites. Nanotechnology Reviews. 2024;13(1).
Sharma P, Sharma S, Lindström T, Hsiao B. Nanocellulose‐enabled membranes for water purification: perspectives. Advanced Sustainable Systems. 2020;4(5).
Salama A, Abou-Zeid R, Leong W, Jeevanandam J, Samyn P, Dufresne A, et al. Nanocellulose-based materials for water treatment: adsorption, photocatalytic degradation, disinfection, antifouling, and nanofiltration. Nanomaterials. 2021;11(11):3008.
Jafri N. Optimum yield of empty fruit bunches cellulose nanofibers by deep eutectic solvent and ultrasonication. Chemical Engineering & Technology. 2023;47(1):56–67.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Rini Perdana

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.