Analysis the Effect of Control Valve Opening on Loading Crude Glycerine Water Pump Motor At PT. Unilever Oleochemical Indonesia

Authors

  • Dwiki Darma Nuriono Brid Department of Electrical Engineering, Faculty of Science and Technology, Pancabudi University, Indonesia
  • Zuraidah Tharo Department of Electrical Engineering, Faculty of Science and Technology, Pancabudi University, Indonesia
  • Pristisal Wibowo Department of Electrical Engineering, Faculty of Science and Technology, Pancabudi University, Indonesia

DOI:

https://doi.org/10.69930/ajer.v2i1.274

Keywords:

Three-phase induction motor, current, efficiency, valve, Opening

Abstract

In the palm oil industry, three-phase induction motors have a very important role in the production process. One of the problems that arises is the quality of the loading power on the motor which can make the motor performance less than optimal. In this study, an analysis and calculation of the power of a three-phase induction motor were carried out with the condition of opening the control valve in stages from 0% to 100%. The motor to be discussed is a three-phase induction motor that works as a pump driver for transferring crude glycerine water to the tank farm at the fatty acid 2 plant at PT. Unilever Oleochemical Indonesia. By using the observation method in conducting research to obtain measurement data, the variables taken are changes in current, power factor, and input power. From the results of this study, the output power value and power efficiency on the motor were obtained when the valve was opened 0%-100%, at the highest valve opening      of 100%, the motor output power was 4.39 KW with a power efficiency on the motor of 95%, at the lowest valve opening, the motor output power was 3.22 KW with an efficiency value obtained 95%.

References

1. R.K. Bindal, I. Kaur, Torque ripple reduction of induction motor using dynamic fuzzy prediction direct torque control, ISA Trans. 99 (2020) 322–338 Available from https://www.sciencedirect.com/science/article/pii/S0019057819304379 .

2. A. Attar, J. Bouchnaif, K. Grari, Control of brushless DC motors using sensorless Back-EMF integration method, Mater. Today Proc. 45 (2021) 7438–7443 Available from https://www.sciencedirect.com/science/article/pii/S2214785321009585 .

3. S. Jnayah, A. Khedher, Sensorless direct torque control of induction motor using sliding mode flux observer, in: Proceedings of the 2019 19th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), 2019, pp. 536–541. https://api.semanticscholar.org/CorpusID:159042627.

4. Q. Chen, Y. Xia, J. Wang, W. Zhao, G Liu, Short-circuit fault-tolerant control for five-phase fault-tolerant permanent magnet motors with trapezoidal back-EMF, Fundam.Res.2 (6) (2022) 964–973 Available from https://www.sciencedirect.com/science/article/pii/S266732582100176X .

5. Solly Aryza., Zulkarnain. (2020). Enhance Parameter Speed Estimation of Induction Motor Using Modified Voltage Model Flux Estimation.Jurnal Teknik Elektro dan Telekomunikasi, 7(1),31-35. https://jurnal.pancabudi.ac.id/index.phpeletrotelekomunikasi/article/view/3884

6. Dino Erivianto., Ahmad Dani. (2023). Pelatihan Pemasangan Insulated Gate Bipolar Transistor (Igbt) Inverter Sebagai Pengatur Kecepatan Motor Pada Pt. Prima Multi Peralatan. Pedamas (PengabDian Pada Masyarakat),1(2),421-423. https//pekatpkm.my.id/index.php/JP/article/view/77/54

7. Ahmad Dani., Dino Erivianto.,(2024). Evaluasi Kinerja Motor Induksi Tiga Fasa dengan Modifikasi Resistansi Motor: Pendekatan Simulasi dengan Automation Studio. Journal of Social Science Research.4(3),513. https://jinnovative.org/index.php/Innovative/article/view/12650/855

8. Ahmad Rizal Nurika., Beni Satria., Zulkarnain Lubis. (2024). An Increase Performance Of Unbalanced Induction Motor At High Temperature. Jurnal Scientia.13(2),1318-1322. http://seaninstitute.org/infor/index.php/pendidikan/article/view/2324

9. P. Misra, B. Kumar, Rotor resistance estimation for improved performance of MRAS-based sensorless speed estimation of induction motor drives, in: Intelligent Algorithms for Analysis and Control of Dynamical Systems, Springer Singapore, Singapore, 2021, pp. 177–187, doi:10.1007/978-981-15-8045-1_18. Available from.

10. D.S. Nair, G. Jagadanand, S. George, Torque estimation using Kalman Filter and Extended Kalman Filter algorithms for a sensorless direct torque controlled BLDC motor drive: a comparative study, J. Electr. Eng. Technol. 16 (5) (2021) 2621–2634 Available from, doi:10.1007/s42835-021-00793-7.

11. E. Kuncham, S. Sen, P. Kumar, H. Pathak, An online model-based fatigue life prediction approach using Extended Kalman Filter, Theor. Appl. Fract. Mech. 117 (2022)103143 https://www.sciencedirect.com/science/article/pii/S0167844221002421 .

12. G. Boztas, O. Aydogmus, Implementation of sensorless speed control of synchronous reluctance motor using Extended Kalman Filter, Eng. Sci. Technol. Int. J. 31 (2022) 101066 https://www.sciencedirect.com/science/article/pii/S2215098621001956 .

13. M.G. Hussien, Y. Liu, W. Xu, M.M. Ismail, Voltage regulation-based sensorless position observer with high-frequency signal injection topology for BDFIGs in ship power microgrid systems, Int. J. Electr. Power Energy Syst. 140 (2022) 108091 Available from https://www.sciencedirect.com/science/article/pii/S0142061522001338 .

14. S. Mahfoud, A. Derouich, N. El Ouanjli, M.A. Mossa, S. Motahhir, M. El Mahfoud, et al., Comparative study between cost functions of genetic algorithm used in direct torque control of a doubly fed induction motor, Appl. Sci. 12 (17) (2022) Available from https://www.mdpi.com/2076-3417/12/17/8717 .

15. P.V. de Campos Souza, Fuzzy neural networks and neuro-fuzzy networks: a review the main techniques and applications used in the literature, Appl. Soft Comput. 92 (2020) 106275 Available from https://www.sciencedirect.com/science/article/pii/S1568494620302155 .

16. D. Wachowiak, Genetic algorithm approach for gains selection of induction machine extended speed observer, Energies 13 (18) (2020) (Basel)Available from https://www.mdpi.com/1996-1073/13/18/4632 .

17. I. Benlaloui, L. Chrifi-Alaoui, M. Ouriagli, A. Khemis, D. Khamari, S. Drid, Improvement of the induction motor sensorless control based on the type-2 fuzzy logic, Electr. Eng. 103 (3) (2021) 1473–1482 Available from, doi:10.1007/s00202-020-01178-1.

18. M.J. Karimi, A. Sadighi, M.R.H. Yazdi, Non-intrusive induction motor parameter estimation using MRAS algorithm and neural network rotor flux observer, in: Proceedings of the 2022 10th RSI International Conference on Robotics and Mechatronics (ICRoM), 2022, pp. 267–272. https://api.semanticscholar.org/CorpusID:256463042. Available from

19. S. Rubino, R.I. Bojoi, F. Mandrile, E Armando, Modular stator flux and torque control of multiphase induction motor drives, in: Proceedings of the 2019 IEEE International Electric Machines & Drives Conference (IEMDC), 2019, pp. 531–538. https://api.semanticscholar.org/CorpusID:199489721. Available from

20. J. Bonet-Jara, A. Quijano-Lopez, D. Morinigo-Sotelo, J. Pons-Llinares, Sensorless speed estimation for the diagnosis of induction motors via MCSA. Review and commercial devices analysis, Sensors 21 (15) (2021) Available from https://www.mdpi.com/1424-8220/21/15/5037.

21. U. Sengamalai, G. Anbazhagan, T.M. Thamizh Thentral, P. Vishnuram, T. Khurshaid, S Kamel, Three phase induction motor drive: a systematic review on dynamic modeling, parameter estimation, and control schemes, Energies 15 (21) (2022) (Basel)Available from https://www.mdpi.com/1996-1073/15/21/8260.

22. S. Rajendran, M. Diaz, R. Cárdenas, E. Espina, E. Contreras, J. Rodriguez, A review of generators and power converters for multi-mw wind energy conversion systems, Processes 10 (11) (2022) 2302, https://doi.org/10.3390/pr10112302.

23. J.D. Camelo-Daza, D.N. Betancourt-Alonso, O.D. Montoya, E. Gómez-Vargas, Parameter estimation in single-phase transformers via the generalized normal distribution optimizer while considering voltage and current measurements, Results Eng. 21 (2024) 101760, https://doi.org/10.1016/j.rineng.2024.101760.

24. L. Abualigah, M. Altalhi, A novel generalized normal distribution arithmetic optimization algorithm for global optimization and data clustering problems, J. Ambient Intell. Humaniz. Comput. (2022), https://doi.org/10.1007/s12652-022-03898-7.

25. J.A. Vega-Forero, J.S. Ramos-Castellanos, O.D. Montoya, Application of the generalized normal distribution optimization algorithm to the optimal selection of conductors in three-phase asymmetric distribution networks, Energies 16 (3) (2023) 1311, https://doi.org/10.3390/en16031311.

26. O.D. Montoya, L.F. Grisales-Noreña, C.A. Ramos-Paja, Optimal allocation and sizing of pv generation units in distribution networks via the generalized normal distribution optimization approach, Computers 11 (4) (2022) 53, https://doi.org/10.3390/ computers11040053.

27. M.O. Gülbahçe, M.E. Karaaslan, Estimation of induction motor equivalent circuit parameters from manufacturer’s datasheet by particle swarm optimization algorithm for variable frequency drives, Electrica 22 (1) (2021) 16–26, https:// doi.org/10.5152/electrica.2021.21122.

28. G. Rigatos, M. Abbaszadeh, P Siano, A nonlinear optimal control approach for permanent magnet AC motors with non-sinusoidal back EMF, Electr. Eng. 104 (4) (2022) 2293–2318 Available from, doi:10.1007/s00202-021-01475-3.

29. G. Wang, H Zhang, A new speed adaptive estimation method based on an improved flux sliding-mode observer for the sensorless control of PMSM drives, ISA Trans. 128 (2022) 675–685 Available from https://www.sciencedirect.com/science/article/pii/S0019057821004870 .

30. K. Laadjal, F. Bento, H.R.P. Antunes, M. Sahraoui, A.J.M. Cardoso, Speed estimation of six-phase induction motors, using the rotor slot harmonics, Sensors 22 (21) (2022 Oct) 8157 (Basel)Available from https://europepmc.org/articles/PMC9656993 .

31. S.D. Niño-Callejas, J.C. Palombi-Gómez, O.D. Montoya, Applying the sine-cosine optimization algorithm to the parametric estimation problem in three-phase induction motors, Ing. Investig. 44 (2) (2024) 1–11, https://doi.org/10.15446/ing.investig. 110310.

32. C. Terron-Santiago, J. Martinez-Roman, R. Puche-Panadero, A. Sapena-Bano, A review of techniques used for induction machine fault modelling, Sensors 21 (14) (2021) 4855, https://doi.org/10.3390/s21144855.

33. J. Montano, O.D. Garzón, D.A. Herrera-Jaramillo, O.D. Montoya, F. Andrade, A. Tobon, Estimating the parameters of a three-phase induction motor using the vortex search algorithm, Iran. J. Sci. Technol. Trans. Electr. Eng. (2023), https://doi.org/ 10.1007/s40998-023-00673-y.

34. S.Y. Bocanegra, O.D. Montoya, A. Molina-Cabrera, Parameter estimation in singlephase transformers employing voltage and current measures, Rev. UIS Ing. 19 (4) (2020) 63–75, https://doi.org/10.18273/revuin.v19n4-2020006.

35. K.M. Charu, P. Thakur, N. Rawat, F. Ansari, S. Gupta, M. Kumar, An efficient data sheet based parameter estimation technique of solar pv, Sci. Rep. 14 (1) (Mar. 2024), https://doi.org/10.1038/s41598-024-57241-5.

Downloads

Published

2025-01-31

How to Cite

Brid, D. D. N., Tharo, Z., & Wibowo , P. (2025). Analysis the Effect of Control Valve Opening on Loading Crude Glycerine Water Pump Motor At PT. Unilever Oleochemical Indonesia. Asian Journal of Environmental Research, 2(1), 29–47. https://doi.org/10.69930/ajer.v2i1.274