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Abstract. Teluk Baguala District, Ambon City is frequently affected by flood and landslide
disasters. This study uses the Maximum Entropy method to model flood and landslide hazard
areas based on environmental variables and the spatial distribution of disaster occurrences. The
flood mapping results show that areas with low vulnerability cover the largest area, totaling
5,296.07 hectares, while medium-risk areas cover only 188.84 hectares, and high-risk areas cover
493.97 hectares. The area with low landslide vulnerability reaches 2,595.19 hectares, whereas
medium vulnerability areas are smaller at 2,327.26 hectares, and very vulnerable or high-risk
areas cover only 694.73 hectares. The flood validation test shows an AUC value of 0.974, while the
landslide AUC value is 0.851. These mapping results are expected to assist the government in
flood and landslide disaster mitigation efforts in the future.
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1. Introduction

Teluk Ambon Baguala District, Ambon City, is an area prone to hydrometeorological
disasters such as floods and landslides due to its topography, high rainfall, and dynamic
land use (Rakuasa & Khromykh, 2025). This flood and landslide disaster has had a
significant impact on the lives of the community, infrastructure, and sustainable
development in the region (Badan Nasional Penanggulangan Bencana, 2025). Therefore,
mapping areas prone to flooding and landslides is crucial as an initial step in risk mitigation
and better spatial planning (Rozaki et al., 2021). Previous studies have shown that coastal
areas with erosion-prone topography and high rainfall require accurate vulnerability
modelling to reduce disaster risk (Rakuasa et al., 2022).

Vulnerability modelling for flood and landslide areas has evolved with the use of
remote sensing technology and Geographic Information Systems (GIS) as the primary tools
for spatial analysis. Conventional methods often have limitations in processing complex
data and variables that interact non-linearly (Cabrera & Lee, 2020). In this context, machine
learning algorithms like Maximum Entropy (MaxEnt) become an effective choice because
they can generate vulnerability probability maps with high precision based on
environmental data and historical disaster events (Jiao et al., 2019; Norallahi & Seyed Kaboli,
2021).

The MaxEnt method, a probabilistic model based on the principle of maximum
entropy, has been widely used in various hazard mapping studies, including for floods and
landslides, with results recognised as effective and accurate (Davis & Blesius, 2015). MaxEnt
utilises presence-only data from disaster events as input and correlates it with
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environmental variables such as elevation, slope, distance from rivers, and land cover type
(Codru & Niacsu, 2022). The advantage of this method lies in its ability to process
incomplete data and provide a vulnerability map output that is spatially well-interpretable
(Kornejady et al., 2017; Huang et al., 2024).

To the best of our knowledge, the use of MaxEnt in this study is aimed at identifying
and mapping flood- and landslide-prone areas in Teluk Ambon Baguala District, which is
geographically vulnerable to hydrometeorological disasters. This method was chosen due to
the complexity of factors influencing disasters in coastal and urban areas, which require an
adaptive and data-driven modelling approach (Huang et al, 2024). The resulting
vulnerability map will serve as a basis for policymakers in effectively determining priorities
for disaster management and mitigation.

Additionally, the integration of spatial and temporal data in MaxEnt allows for
dynamic modelling, enabling the monitoring of changes in disaster vulnerability due to
environmental changes or human activities (Maerker et al., 2016). This approach becomes
highly relevant in the context of Ambon City, which is experiencing rapid development with
significant land cover changes, thereby increasing the potential risk of flooding and
landslides (Javidan et al., 2021).

Overall, this research contributes to the development of GIS and machine learning-
based disaster risk mitigation methodologies in tropical regions with specific characteristics.
By utilising the MaxEnt model, it is hoped that the resulting flood- and landslide-prone area
maps will be more accurate and scientifically accountable, while also serving as a foundation

for sustainable development in Teluk Ambon Baguala District, Ambon City.

2. Methods

This research was conducted in Teluk Ambon Baguala District, Ambon City,
Indonesia (Figure 1). The research method used is Maximum Entropy (MaxEnt). The
environmental variables used for flood analysis consist of elevation, soil type, precipitation,
land use type, river density, and distance to river. The variables used for landslide analysis
are elevation, slope, soil type, precipitation, land use type, and distance to fault. There are 23
coordinates for flood locations and 6 coordinates for landslide locations. A complete list of
environmental variables and their sources can be found in Table 1.

Table 1. Environmental variables

No Environmental variables Source Flood Landslide
1  Slope Geospatial Information Agency - N
2 Elevation Geospatial Information Agency l V

. Food and Agriculture
3 Soil Type Organizition v v
s Meteorological and
4 Precipitation Climatologi(i;al Agency v v
5 Land Use Type Planet Labs v v
6  River Density Geospatial Information Agency V -
7  Distance to River Geospatial Information Agency v -
8  Distance to Fault Indonesian Geological Agency - v
9 Flood and landslide National Disaster Management N N
location Agency
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Teluk Ambon 'y
Baguala District 2

Figure 1. Research Location: Teluk Ambon Baguala District, Indonesia

The data processing begins with the collection of spatial data on environmental
variables and historical data on flood and landslide events, which are then prepared in
raster and vector formats with a uniform coordinate system to ensure accurate analysis.
Environmental variables influencing disaster occurrence were selected based on their
correlation with event data and then included in the MaxEnt model. MaxEnt is a machine
learning method that uses the principle of maximum entropy to predict the spatial
distribution of potential hazards using only presence-only data and relevant environmental
variables (Kim et al., 2015; Ramos-Bernal et al., 2024). This model generates probability maps
of areas prone to flooding and landslides, which are then classified based on vulnerability
level. The software used in this study is ArcGIS, QGIS, and MaxEnt.

Flood/landslide
location

75% Training Dataset
25% Validation Dataset
10 Repetitions

5000 Iterations

A 4

Maximum Entropy

Environmental
variables causing
floods/landslides

r v

. Contribution Value of o
Fgﬂi‘;%ﬁ;;ge Environmental Variables odel Validation
to Flood/Landslide Test Results

Figure 2. Research workflow

Model validation was performed using the statistical method Area Under Curve
(AUC) on the Receiver Operating Characteristic (ROC) curve to measure the accuracy of the
model's predictions. With this evaluation, a final map was obtained that can be used as a
basis for making disaster mitigation policy decisions (Ramos-Bernal et al., 2024b). The
MaxEnt model has been widely proven effective in mapping disaster vulnerability using
environmental and historical event data and is capable of providing informative spatial
outputs for scientific and accurate disaster risk management. This approach is highly

https://journal.scitechgrup.com/index.php/jsi 597




relevant for the complex conditions in Teluk Baguala District, which faces the simultaneous
risks of flooding and landslides. The complete workflow can be seen in Figure 2.

3. Results and Discussion
3.1. Influence of Environmental Variables on Floods and Landslides

The contribution of environmental variables to flood hazard in Figure 4 illustrates
the different relative influence of each variable in determining an area's vulnerability to
flooding. The elevation variable has the most dominant contribution, accounting for 70.3%,
which indicates that the location's altitude is highly determinant of flood potential. Areas
with low elevation tend to be more susceptible to flooding because water tends to flow to
lower areas, making elevation determination a key factor in flood risk modelling. Spatially,
the environmental variables influencing floods can be seen in Figure 3.
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Figure 3. Environmental variables: a) elevation, b) distance from river, c) precipitation, d)
stream density, e) land cover, f) soil type, g) slope, h) distance from fault

The contribution of land cover type is also quite significant at 22.9%. This reflects the
important role of land surface use and conditions in influencing rainwater infiltration and
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surface runoff. Areas with dense cover or hard surfaces like asphalt and concrete will
increase surface runoff and flood risk, while vegetation cover can absorb water and reduce
these risks (Hu et al., 2025). Therefore, this variable is highly relevant for inclusion in the
spatial analysis of flood vulnerability.

Percentage Contribution (%)
Soil type 1 0.7
Land cover mm——— 229
Drainage density m 1.7
Precipitation mm 3.3
Distance from river 1 1.1

Elevation s 70.3

0 20 40 60 80

Figure 4. Contribution of Environmental Variables to Flood Hazard

Other variables such as rainfall, drainage density, distance from rivers, and soil type
have relatively small contributions, accounting for 3.3%, 1.7%, 1.1%, and 0.7%, respectively.
Although the figures are small, these variables are still important because they influence
water flow patterns and the intensity of flood events. Rainfall, as the primary source of
water, plays a role in determining the amount of runoff, while the distance and density of
rivers are related to flow capacity and the potential for water overflow.

Overall, this table shows that in the context of flood hazard mapping, topographic
factors, particularly elevation, are the most critical variables in determining regional
vulnerability. However, other variables such as land cover and hydrology must still be
considered integrally to produce an accurate and representative vulnerability map. This
multidimensional approach allows for more effective mitigation decision-making based on
the most influential environmental factors (Huang et al., 2024).

Percentage Contribution (%)

Soil type mmmm 4.6
Land cover mmmmmssssm——— 163
Distance to Fault m 2
Precipitation m——— 8.2
Elevation e 28 3

Slope T 40.6
0 10 20 30 40 50
Figure 5. Contribution of Environmental Variables to landslide Hazard

The contribution of environmental variables to landslide hazard in Figure 5 shows
that slope is the most dominant factor, contributing 40.6%. This confirms that the steepness
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of the ground surface significantly influences landslide triggers, as steep slopes tend to be
more unstable and susceptible to soil mass movement, especially when combined with
triggering factors such as high rainfall (Van Duong, 2024).

Elevation ranks second with a contribution of 28.3%, indicating that the height of a
location influences landslide vulnerability. Elevation is related to the geomorphological
characteristics and drainage patterns of an area, thus playing a role in determining slope
stability and the potential for landslides (Codru & Niacsu, 2022). Areas with a specific
elevation can have different risks depending on their combination with other variables such
as slope and rainfall.

Rainfall contributed 8.2%, indicating its significant role as the main trigger for
landslides. High rainfall intensity and duration can weaken soil cohesion and increase water
load on slopes, thereby accelerating the process of landslides (Felicisimo et al., 2013).
Although its contribution is less than slope and elevation, rainfall remains a major factor in
landslide occurrences.

Other variables such as land cover (16.3%), soil type (4.6%), and distance to faults
(2%) also contribute to landslide vulnerability. Land cover reflects the influence of human
activities and vegetation conditions that affect slope stability, while soil type influences the
physical and mechanical properties of the soil substrate. The distance to the fault indicates
the potential for tectonic vibrations as a trigger for landslides, although its contribution is
relatively small compared to other factors. All these variables are important to integrate in
order to obtain a valid and accurate landslide susceptibility map.

3.2. Flood and landslide model based on MaxEnt

The flood model developed using the Maximum Entropy (MaxEnt) approach for the
Teluk Ambon Baguala sub-district classifies flood risk levels into three vulnerability classes:
low, medium, and high. The model results show that most of the 5,296.07-hectare area falls
into the low-risk category. This area generally has a higher elevation and favourable land
cover conditions, such as natural vegetation that allows for optimal water infiltration, thus
reducing the potential for waterlogging and the risk of flooding. Conditions like this are
important to maintain for disaster mitigation and sustainable environmental management
(Rakuasa et al., 2022).

On the other hand, there are smaller areas with moderate and high-risk levels,
covering 188.84 hectares and 493.97 hectares, respectively. These moderate- and high-risk
areas are typically located in areas with lower elevations and more degraded land cover
conditions, such as areas that have been converted to dense settlements or open land
susceptible to surface runoff (Harshasimha & Bhatt, 2023). These areas are a priority focus in
flood mitigation efforts, particularly in the planning of drainage infrastructure and land
conservation (Huang et al., 2024).

The importance of this vulnerability classification is to provide a clear spatial
overview of flood risk distribution, enabling policymakers and stakeholders to formulate the
most effective mitigation strategies (Norallahi & Seyed Kaboli, 2021). Flood risk maps based
on this class also serve as a tool for public outreach to raise awareness and preparedness in
the face of potential floods (Zuo et al., 2023). With the MaxEnt approach, this model is able
to utilise spatial flood presence data and environmental variables to generate accurate and
informative probabilistic maps.
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Overall, the use of MaxEnt in flood modelling in Teluk Ambon Baguala shows that
the combination of elevation variables and land cover conditions is a major determinant in
determining flood distribution and risk levels (Rakuasa & Latue, 2024). Therefore,
maintaining land cover quality and implementing sustainable land management in low-risk
areas can be a long-term strategy to reduce the impact of floods while increasing the region's
resilience to climate change and human activities (Hao et al., 2024). This result reinforces the
importance of data- and technology-driven approaches in modern disaster mitigation. The
flood model in Teluk Ambon Baguala District can be seen in Figure 6.
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Figure 6. Flood vulnerability map

The landslide model developed using the Maximum Entropy (MaxEnt) approach in
Teluk Ambon Baguala District classifies landslide susceptibility into three classes: low,
medium, and high, with significantly different areas for each class. The area with low
susceptibility covers the largest area, which is 2,595.19 hectares. This indicates that most of
the area has relatively more stable environmental and topographic conditions and is less
susceptible to landslides.

The area with moderate vulnerability, covering 2,327.26 hectares, which is a
moderately risky region, signals the need for mitigation attention in this zone. This area may
have certain environmental characteristics, such as a moderate slope and more degraded
land cover compared to low-risk areas, potentially making it a transition zone that requires
more careful management in the face of potential landslides (Rakuasa et al., 2025). The
landslide model for Teluk Ambon Baguala District can be seen in Figure 7.

Meanwhile, areas with high vulnerability occupy the smallest area, which is 694.73
hectares, but are very important because this zone is the most prone to landslides and poses
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a high risk of causing damage and threatening public safety. This zone is usually located in
areas with steep slopes and specific elevations and may be affected by extreme rainfall
conditions as well as human activities that damage soil structure (Rakuasa, 2025).
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Figure 7. Landslide vulnerability map

Practically, the results of this classification provide clear spatial guidance for
policymakers and disaster mitigation practitioners to prioritise flood and landslide risk
management (Sugandhi et al., 2023). This risk mapping helps in spatial planning, the
development of landslide control infrastructure, and public awareness campaigns to
improve preparedness, particularly in areas with moderate to high vulnerability (Somae et
al., 2022). The MaxEnt approach allows for adaptive and data-driven landslide vulnerability
models, which are highly relevant for the dynamic conditions in Teluk Ambon Baguala.

3.3. Accuracy Test of Flood and Landslide Models

The accuracy test results of the flood model, evaluated using the omission method,
area prediction, and sensitivity, with an Area Under Curve (AUC) value of 0.974, indicate
excellent and reliable model performance. An AUC value close to 1 signifies that the MaxEnt
model has a very high ability to spatially distinguish between flood-prone and non-flood-
prone areas. This means the omission error rate, which is the model's failure to identify
flood-prone areas, is very low (Norallahi & Seyed Kaboli, 2021). With a low omission rate,
the majority of areas that are indeed prone to flooding are successfully predicted by the
model, significantly reducing the risk of losing important data in critical regions (Lorente,
2019). The flood model validation test can be seen in Figure 8.
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Figure 8. Flood model validation test

Additionally, the model's high sensitivity indicates that it is capable of detecting
most of the actual flood events occurring in the study area without significant information
loss. Good sensitivity indicates that the model effectively captures environmental signals
and flood risk distribution based on the input variables used, thus providing realistic and
applicable vulnerability maps to support disaster mitigation planning (Qasimi et al., 2024).
This risk map can be used as a basis for decision-making in regional management,
development planning, and prioritising resource allocation for flood prevention and
mitigation measures (Huang et al., 2024).

Technically, the high performance of this model also reflects the quality of the
environmental data used and the appropriateness of selecting important variables,
especially the significant dominance of elevation and land cover variables that influence
flood risk prediction. However, although AUC is a key indicator of model performance, it is
recommended to supplement validation with other metrics and independent testing to
further strengthen the model's reliability before large-scale implementation. Thus, an AUC
value of 0.974 proves that the developed MaxEnt model is highly effective and accurate for
mapping flood vulnerability in Teluk Baguala District, providing a strong foundation for
more targeted risk reduction and mitigation strategies (Kalita et al., 2025).
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Figure 9. Landslide model validation test

The accuracy test results for the landslide model using the omission method, area
prediction, and sensitivity show good performance, as indicated by an AUC value of 0.851
in Figure 9. This AUC value indicates that the model is able to distinguish quite well
between landslide-prone and non-prone areas, although not as strongly as models with an
AUC approaching 1. The small number of landslide event points, only 6, is a significant
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limitation for the statistical power of the MaxEnt model in this analysis. Although the AUC
value of the landslide model reached 0.851 and was statistically acceptable, the limitations in
the number of observation points affected the potential reliability and generalisability of the
results (Maulita et al., 2024). Therefore, the results of the landslide modelling need to be
interpreted with caution, with suggestions for adding more event points in future research
to improve the model's validity (Maerker et al., 2016). The relatively low omission rate
indicates that the model is able to identify most of the actual landslide locations, while
adequate sensitivity confirms the model's effectiveness in detecting landslide-prone areas.
Thus, this MaxEnt model can be used as a valid tool for landslide risk mitigation planning
and land management in the study area.

3.4. Policy Recommendations

Policy recommendations regarding the mapping of flood- and landslide-prone areas
in Teluk Baguala District, Ambon City, need to be directed toward strengthening the
integration of MaxEnt-based mapping results into spatial planning and land use
management. With accurate hazard maps, local governments can establish no-build zones in
high-risk areas and direct development to safer locations, in line with the principle of
spatial-based disaster risk reduction (Li et al., 2018). This is important given the dynamic
land use changes in Ambon, which have the potential to increase disaster risk (Rana et al.,
2021).

Additionally, mitigation strategies must integrate structural and non-structural
approaches in a unified manner. The structural approach includes building disaster-resistant
infrastructure such as drainage systems and slope reinforcement, while non-structural
approaches like community education, local capacity building, and MaxEnt-based spatial
data early warning systems are key to improving community preparedness and response.
Coordination and socialisation by the Ambon City Regional Disaster Management Agency
(BPBD) have already been carried out, but they need to be strengthened with monitoring
and resource support to make mitigation efforts more optimal (Van Niekerk et al., 2018).

Mitigation policies must also be based on adaptive monitoring and evaluation that
are responsive to environmental and social dynamics (Huang et al., 2024). With MaxEnt
modelling that can be updated according to current conditions, policies become flexible and
evidence-based in the face of climate change and human activities that affect flood and
landslide risks. This is important to ensure that mitigation measures are always relevant and
effective and that they support sustainable development in disaster-prone areas like Baguala
Bay. Implementing policies like this will strengthen regional resilience to disasters while
significantly reducing their negative impact.

Conclusions

The flood and landslide vulnerability mapping model in Teluk Baguala District
using the Maximum Entropy (MaxEnt) approach successfully classified risk levels into low,
medium, and high categories, with results showing that most of the area is considered safe,
but important zones require special attention for mitigation. The flood model demonstrated
excellent performance with an AUC value of 0.974, indicating high accuracy in
distinguishing flood-prone areas, while the landslide model has an AUC value of 0.851, also
valid for landslide risk mitigation planning use. The distribution of areas with medium and
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high risk levels is the main focus for risk management actions to minimize disaster impacts,
making this MaxEnt model proven effective and reliable as a tool for disaster risk reduction
planning in the study area.
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