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Abstract. Teluk Baguala District, Ambon City is frequently affected by flood and landslide 
disasters. This study uses the Maximum Entropy method to model flood and landslide hazard 
areas based on environmental variables and the spatial distribution of disaster occurrences. The 
flood mapping results show that areas with low vulnerability cover the largest area, totaling 
5,296.07 hectares, while medium-risk areas cover only 188.84 hectares, and high-risk areas cover 
493.97 hectares. The area with low landslide vulnerability reaches 2,595.19 hectares, whereas 
medium vulnerability areas are smaller at 2,327.26 hectares, and very vulnerable or high-risk 
areas cover only 694.73 hectares. The flood validation test shows an AUC value of 0.974, while the 
landslide AUC value is 0.851. These mapping results are expected to assist the government in 
flood and landslide disaster mitigation efforts in the future.                                          
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1. Introduction 

Teluk Ambon Baguala District, Ambon City, is an area prone to hydrometeorological 

disasters such as floods and landslides due to its topography, high rainfall, and dynamic 

land use (Rakuasa & Khromykh, 2025). This flood and landslide disaster has had a 

significant impact on the lives of the community, infrastructure, and sustainable 

development in the region (Badan Nasional Penanggulangan Bencana, 2025). Therefore, 

mapping areas prone to flooding and landslides is crucial as an initial step in risk mitigation 

and better spatial planning (Rozaki et al., 2021). Previous studies have shown that coastal 

areas with erosion-prone topography and high rainfall require accurate vulnerability 

modelling to reduce disaster risk (Rakuasa et al., 2022). 

Vulnerability modelling for flood and landslide areas has evolved with the use of 

remote sensing technology and Geographic Information Systems (GIS) as the primary tools 

for spatial analysis. Conventional methods often have limitations in processing complex 

data and variables that interact non-linearly (Cabrera & Lee, 2020). In this context, machine 

learning algorithms like Maximum Entropy (MaxEnt) become an effective choice because 

they can generate vulnerability probability maps with high precision based on 

environmental data and historical disaster events (Jiao et al., 2019; Norallahi & Seyed Kaboli, 

2021). 

The MaxEnt method, a probabilistic model based on the principle of maximum 

entropy, has been widely used in various hazard mapping studies, including for floods and 

landslides, with results recognised as effective and accurate (Davis & Blesius, 2015). MaxEnt 

utilises presence-only data from disaster events as input and correlates it with 
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environmental variables such as elevation, slope, distance from rivers, and land cover type 

(Codru & Niacşu, 2022). The advantage of this method lies in its ability to process 

incomplete data and provide a vulnerability map output that is spatially well-interpretable 

(Kornejady et al., 2017;  Huang et al., 2024). 

To the best of our knowledge, the use of MaxEnt in this study is aimed at identifying 

and mapping flood- and landslide-prone areas in Teluk Ambon Baguala District, which is 

geographically vulnerable to hydrometeorological disasters. This method was chosen due to 

the complexity of factors influencing disasters in coastal and urban areas, which require an 

adaptive and data-driven modelling approach (Huang et al., 2024). The resulting 

vulnerability map will serve as a basis for policymakers in effectively determining priorities 

for disaster management and mitigation. 

Additionally, the integration of spatial and temporal data in MaxEnt allows for 

dynamic modelling, enabling the monitoring of changes in disaster vulnerability due to 

environmental changes or human activities (Maerker et al., 2016). This approach becomes 

highly relevant in the context of Ambon City, which is experiencing rapid development with 

significant land cover changes, thereby increasing the potential risk of flooding and 

landslides (Javidan et al., 2021). 

Overall, this research contributes to the development of GIS and machine learning-

based disaster risk mitigation methodologies in tropical regions with specific characteristics. 

By utilising the MaxEnt model, it is hoped that the resulting flood- and landslide-prone area 

maps will be more accurate and scientifically accountable, while also serving as a foundation 

for sustainable development in Teluk Ambon Baguala District, Ambon City. 

 

2. Methods 

This research was conducted in Teluk Ambon Baguala District, Ambon City, 

Indonesia (Figure 1). The research method used is Maximum Entropy (MaxEnt). The 

environmental variables used for flood analysis consist of elevation, soil type, precipitation, 

land use type, river density, and distance to river. The variables used for landslide analysis 

are elevation, slope, soil type, precipitation, land use type, and distance to fault. There are 23 

coordinates for flood locations and 6 coordinates for landslide locations. A complete list of 

environmental variables and their sources can be found in Table 1. 

 

Table 1. Environmental variables 

No Environmental variables Source Flood Landslide 

1 Slope Geospatial Information Agency - √ 
2 Elevation Geospatial Information Agency √ √ 

3 Soil Type 
Food and Agriculture 

Organization 
√ √ 

4 Precipitation 
Meteorological and 

Climatological Agency 
√ √ 

5 Land Use Type Planet Labs √ √ 

6 River Density  Geospatial Information Agency √ - 
7 Distance to River Geospatial Information Agency √ - 
8 Distance to Fault Indonesian Geological Agency - √ 

9 
Flood and landslide 
location 

National Disaster Management 
Agency 

√ √ 
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Figure 1. Research Location: Teluk Ambon Baguala District, Indonesia 

 

The data processing begins with the collection of spatial data on environmental 

variables and historical data on flood and landslide events, which are then prepared in 

raster and vector formats with a uniform coordinate system to ensure accurate analysis. 

Environmental variables influencing disaster occurrence were selected based on their 

correlation with event data and then included in the MaxEnt model. MaxEnt is a machine 

learning method that uses the principle of maximum entropy to predict the spatial 

distribution of potential hazards using only presence-only data and relevant environmental 

variables (Kim et al., 2015; Ramos-Bernal et al., 2024). This model generates probability maps 

of areas prone to flooding and landslides, which are then classified based on vulnerability 

level. The software used in this study is ArcGIS, QGIS, and MaxEnt. 

 

 
Figure 2. Research workflow 

 

Model validation was performed using the statistical method Area Under Curve 

(AUC) on the Receiver Operating Characteristic (ROC) curve to measure the accuracy of the 

model's predictions. With this evaluation, a final map was obtained that can be used as a 

basis for making disaster mitigation policy decisions (Ramos-Bernal et al., 2024b). The 

MaxEnt model has been widely proven effective in mapping disaster vulnerability using 

environmental and historical event data and is capable of providing informative spatial 

outputs for scientific and accurate disaster risk management. This approach is highly 
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relevant for the complex conditions in Teluk Baguala District, which faces the simultaneous 

risks of flooding and landslides.  The complete workflow can be seen in Figure 2. 

 

3. Results and Discussion 

3.1. Influence of Environmental Variables on Floods and Landslides 

The contribution of environmental variables to flood hazard in Figure 4 illustrates 

the different relative influence of each variable in determining an area's vulnerability to 

flooding. The elevation variable has the most dominant contribution, accounting for 70.3%, 

which indicates that the location's altitude is highly determinant of flood potential. Areas 

with low elevation tend to be more susceptible to flooding because water tends to flow to 

lower areas, making elevation determination a key factor in flood risk modelling. Spatially, 

the environmental variables influencing floods can be seen in Figure 3. 

 

 
Figure 3. Environmental variables: a) elevation, b) distance from river, c) precipitation, d) 

stream density, e) land cover, f) soil type, g) slope, h) distance from fault 
 

The contribution of land cover type is also quite significant at 22.9%. This reflects the 

important role of land surface use and conditions in influencing rainwater infiltration and 
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surface runoff. Areas with dense cover or hard surfaces like asphalt and concrete will 

increase surface runoff and flood risk, while vegetation cover can absorb water and reduce 

these risks (Hu et al., 2025). Therefore, this variable is highly relevant for inclusion in the 

spatial analysis of flood vulnerability. 

 

 
Figure 4. Contribution of Environmental Variables to Flood Hazard 

 

Other variables such as rainfall, drainage density, distance from rivers, and soil type 

have relatively small contributions, accounting for 3.3%, 1.7%, 1.1%, and 0.7%, respectively. 

Although the figures are small, these variables are still important because they influence 

water flow patterns and the intensity of flood events. Rainfall, as the primary source of 

water, plays a role in determining the amount of runoff, while the distance and density of 

rivers are related to flow capacity and the potential for water overflow. 

Overall, this table shows that in the context of flood hazard mapping, topographic 

factors, particularly elevation, are the most critical variables in determining regional 

vulnerability. However, other variables such as land cover and hydrology must still be 

considered integrally to produce an accurate and representative vulnerability map. This 

multidimensional approach allows for more effective mitigation decision-making based on 

the most influential environmental factors (Huang et al., 2024).  

 

 
Figure 5. Contribution of Environmental Variables to landslide Hazard 

 

The contribution of environmental variables to landslide hazard in Figure 5 shows 

that slope is the most dominant factor, contributing 40.6%. This confirms that the steepness 
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of the ground surface significantly influences landslide triggers, as steep slopes tend to be 

more unstable and susceptible to soil mass movement, especially when combined with 

triggering factors such as high rainfall (Van Duong, 2024). 

Elevation ranks second with a contribution of 28.3%, indicating that the height of a 

location influences landslide vulnerability. Elevation is related to the geomorphological 

characteristics and drainage patterns of an area, thus playing a role in determining slope 

stability and the potential for landslides (Codru & Niacşu, 2022). Areas with a specific 

elevation can have different risks depending on their combination with other variables such 

as slope and rainfall.  

Rainfall contributed 8.2%, indicating its significant role as the main trigger for 

landslides. High rainfall intensity and duration can weaken soil cohesion and increase water 

load on slopes, thereby accelerating the process of landslides (Felícisimo et al., 2013). 

Although its contribution is less than slope and elevation, rainfall remains a major factor in 

landslide occurrences.  

Other variables such as land cover (16.3%), soil type (4.6%), and distance to faults 

(2%) also contribute to landslide vulnerability. Land cover reflects the influence of human 

activities and vegetation conditions that affect slope stability, while soil type influences the 

physical and mechanical properties of the soil substrate. The distance to the fault indicates 

the potential for tectonic vibrations as a trigger for landslides, although its contribution is 

relatively small compared to other factors. All these variables are important to integrate in 

order to obtain a valid and accurate landslide susceptibility map.  

 

3.2. Flood and landslide model based on MaxEnt 

 The flood model developed using the Maximum Entropy (MaxEnt) approach for the 

Teluk Ambon Baguala sub-district classifies flood risk levels into three vulnerability classes: 

low, medium, and high. The model results show that most of the 5,296.07-hectare area falls 

into the low-risk category. This area generally has a higher elevation and favourable land 

cover conditions, such as natural vegetation that allows for optimal water infiltration, thus 

reducing the potential for waterlogging and the risk of flooding. Conditions like this are 

important to maintain for disaster mitigation and sustainable environmental management 

(Rakuasa et al., 2022).  

 On the other hand, there are smaller areas with moderate and high-risk levels, 

covering 188.84 hectares and 493.97 hectares, respectively. These moderate- and high-risk 

areas are typically located in areas with lower elevations and more degraded land cover 

conditions, such as areas that have been converted to dense settlements or open land 

susceptible to surface runoff (Harshasimha & Bhatt, 2023). These areas are a priority focus in 

flood mitigation efforts, particularly in the planning of drainage infrastructure and land 

conservation (Huang et al., 2024). 

 The importance of this vulnerability classification is to provide a clear spatial 

overview of flood risk distribution, enabling policymakers and stakeholders to formulate the 

most effective mitigation strategies (Norallahi & Seyed Kaboli, 2021). Flood risk maps based 

on this class also serve as a tool for public outreach to raise awareness and preparedness in 

the face of potential floods (Zuo et al., 2023). With the MaxEnt approach, this model is able 

to utilise spatial flood presence data and environmental variables to generate accurate and 

informative probabilistic maps. 
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 Overall, the use of MaxEnt in flood modelling in Teluk Ambon Baguala shows that 

the combination of elevation variables and land cover conditions is a major determinant in 

determining flood distribution and risk levels (Rakuasa & Latue, 2024). Therefore, 

maintaining land cover quality and implementing sustainable land management in low-risk 

areas can be a long-term strategy to reduce the impact of floods while increasing the region's 

resilience to climate change and human activities (Hao et al., 2024). This result reinforces the 

importance of data- and technology-driven approaches in modern disaster mitigation. The 

flood model in Teluk Ambon Baguala District can be seen in Figure 6. 

 
Figure 6. Flood vulnerability map 

 

 The landslide model developed using the Maximum Entropy (MaxEnt) approach in 

Teluk Ambon Baguala District classifies landslide susceptibility into three classes: low, 

medium, and high, with significantly different areas for each class. The area with low 

susceptibility covers the largest area, which is 2,595.19 hectares. This indicates that most of 

the area has relatively more stable environmental and topographic conditions and is less 

susceptible to landslides. 

 The area with moderate vulnerability, covering 2,327.26 hectares, which is a 

moderately risky region, signals the need for mitigation attention in this zone. This area may 

have certain environmental characteristics, such as a moderate slope and more degraded 

land cover compared to low-risk areas, potentially making it a transition zone that requires 

more careful management in the face of potential landslides (Rakuasa et al., 2025). The 

landslide model for Teluk Ambon Baguala District can be seen in Figure 7. 

 Meanwhile, areas with high vulnerability occupy the smallest area, which is 694.73 

hectares, but are very important because this zone is the most prone to landslides and poses 
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a high risk of causing damage and threatening public safety. This zone is usually located in 

areas with steep slopes and specific elevations and may be affected by extreme rainfall 

conditions as well as human activities that damage soil structure (Rakuasa, 2025). 

 
Figure 7. Landslide vulnerability map 

 

 Practically, the results of this classification provide clear spatial guidance for 

policymakers and disaster mitigation practitioners to prioritise flood and landslide risk 

management (Sugandhi et al., 2023). This risk mapping helps in spatial planning, the 

development of landslide control infrastructure, and public awareness campaigns to 

improve preparedness, particularly in areas with moderate to high vulnerability (Somae et 

al., 2022). The MaxEnt approach allows for adaptive and data-driven landslide vulnerability 

models, which are highly relevant for the dynamic conditions in Teluk Ambon Baguala. 

 

3.3. Accuracy Test of Flood and Landslide Models 

The accuracy test results of the flood model, evaluated using the omission method, 

area prediction, and sensitivity, with an Area Under Curve (AUC) value of 0.974, indicate 

excellent and reliable model performance. An AUC value close to 1 signifies that the MaxEnt 

model has a very high ability to spatially distinguish between flood-prone and non-flood-

prone areas. This means the omission error rate, which is the model's failure to identify 

flood-prone areas, is very low (Norallahi & Seyed Kaboli, 2021). With a low omission rate, 

the majority of areas that are indeed prone to flooding are successfully predicted by the 

model, significantly reducing the risk of losing important data in critical regions (Lorente, 

2019). The flood model validation test can be seen in Figure 8. 
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Figure 8. Flood model validation test 

 
Additionally, the model's high sensitivity indicates that it is capable of detecting 

most of the actual flood events occurring in the study area without significant information 

loss. Good sensitivity indicates that the model effectively captures environmental signals 

and flood risk distribution based on the input variables used, thus providing realistic and 

applicable vulnerability maps to support disaster mitigation planning (Qasimi et al., 2024). 

This risk map can be used as a basis for decision-making in regional management, 

development planning, and prioritising resource allocation for flood prevention and 

mitigation measures (Huang et al., 2024). 

Technically, the high performance of this model also reflects the quality of the 

environmental data used and the appropriateness of selecting important variables, 

especially the significant dominance of elevation and land cover variables that influence 

flood risk prediction. However, although AUC is a key indicator of model performance, it is 

recommended to supplement validation with other metrics and independent testing to 

further strengthen the model's reliability before large-scale implementation. Thus, an AUC 

value of 0.974 proves that the developed MaxEnt model is highly effective and accurate for 

mapping flood vulnerability in Teluk Baguala District, providing a strong foundation for 

more targeted risk reduction and mitigation strategies (Kalita et al., 2025). 

 

 
Figure 9. Landslide model validation test 

 
The accuracy test results for the landslide model using the omission method, area 

prediction, and sensitivity show good performance, as indicated by an AUC value of 0.851 

in Figure 9. This AUC value indicates that the model is able to distinguish quite well 

between landslide-prone and non-prone areas, although not as strongly as models with an 

AUC approaching 1.  The small number of landslide event points, only 6, is a significant 
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limitation for the statistical power of the MaxEnt model in this analysis. Although the AUC 

value of the landslide model reached 0.851 and was statistically acceptable, the limitations in 

the number of observation points affected the potential reliability and generalisability of the 

results (Maulita et al., 2024). Therefore, the results of the landslide modelling need to be 

interpreted with caution, with suggestions for adding more event points in future research 

to improve the model's validity (Maerker et al., 2016). The relatively low omission rate 

indicates that the model is able to identify most of the actual landslide locations, while 

adequate sensitivity confirms the model's effectiveness in detecting landslide-prone areas. 

Thus, this MaxEnt model can be used as a valid tool for landslide risk mitigation planning 

and land management in the study area.  

 

3.4. Policy Recommendations 

Policy recommendations regarding the mapping of flood- and landslide-prone areas 

in Teluk Baguala District, Ambon City, need to be directed toward strengthening the 

integration of MaxEnt-based mapping results into spatial planning and land use 

management. With accurate hazard maps, local governments can establish no-build zones in 

high-risk areas and direct development to safer locations, in line with the principle of 

spatial-based disaster risk reduction (Li et al., 2018). This is important given the dynamic 

land use changes in Ambon, which have the potential to increase disaster risk (Rana et al., 

2021). 

Additionally, mitigation strategies must integrate structural and non-structural 

approaches in a unified manner. The structural approach includes building disaster-resistant 

infrastructure such as drainage systems and slope reinforcement, while non-structural 

approaches like community education, local capacity building, and MaxEnt-based spatial 

data early warning systems are key to improving community preparedness and response. 

Coordination and socialisation by the Ambon City Regional Disaster Management Agency 

(BPBD) have already been carried out, but they need to be strengthened with monitoring 

and resource support to make mitigation efforts more optimal (Van Niekerk et al., 2018). 

Mitigation policies must also be based on adaptive monitoring and evaluation that 

are responsive to environmental and social dynamics (Huang et al., 2024). With MaxEnt 

modelling that can be updated according to current conditions, policies become flexible and 

evidence-based in the face of climate change and human activities that affect flood and 

landslide risks. This is important to ensure that mitigation measures are always relevant and 

effective and that they support sustainable development in disaster-prone areas like Baguala 

Bay. Implementing policies like this will strengthen regional resilience to disasters while 

significantly reducing their negative impact. 

 

Conclusions 

The flood and landslide vulnerability mapping model in Teluk Baguala District 

using the Maximum Entropy (MaxEnt) approach successfully classified risk levels into low, 

medium, and high categories, with results showing that most of the area is considered safe, 

but important zones require special attention for mitigation. The flood model demonstrated 

excellent performance with an AUC value of 0.974, indicating high accuracy in 

distinguishing flood-prone areas, while the landslide model has an AUC value of 0.851, also 

valid for landslide risk mitigation planning use. The distribution of areas with medium and 
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high risk levels is the main focus for risk management actions to minimize disaster impacts, 

making this MaxEnt model proven effective and reliable as a tool for disaster risk reduction 

planning in the study area. 
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