

Asian Journal of Environmental Research

E-ISSN: 3047-4930

DOI: https://doi.org/10.69930/ajer.v2i3.476

Research Article

Vol. 2 (3), 2025

Page: 206-217

Physical Characteristics of Organic Fertilizer Based on Banana Corm and Frond Variations

Dian Nugraheni ^{1,*}, Khalis Nadhira Santosa ¹, Nina Chairani Fatimah ¹, Rosita Assyifa Purba ¹, Abraham Tiandno Witjaksono ¹, Hanandya Rahma Dinda Destriani ¹, Eka Nurul Qomaliyah ¹, Himawan Ganjar Prabowo ²

Abstract. This study aims to determine the effect of variations in banana corm and banana fronds on the odor and physical properties of solid organic fertilizer made from household waste. In addition, the research also aims to identify the differences in odor and physical characteristics between solid organic fertilizer based on EM4 and that based on banana corm and fronds. The method used is an experimental approach to test the effectiveness of organic fertilizers produced from different raw materials: banana corm, banana frond, rice-washing water, and household waste (predominantly rotten tape). The first treatment used a mixture of banana corm, banana fronds, rice-washing water, and household waste in a 1:1:1:1 ratio. The second treatment consisted of banana fronds, rice-washing water, and household waste in a 1:1:1 ratio. The third treatment included banana corm, rice-washing water, and household waste, also in a 1:1:1 ratio. The fourth treatment used EM4, rice-washing water, and household waste in a ½:1:1 ratio. The results showed that on the first day, all treatments emitted a strong odor of tape and household waste. Over time, an acidic smell began to emerge, eventually turning into a fresh, earthy scent, particularly in treatments with banana corm and EM4. The color of the fertilizer changed from dark brown to blackish brown, indicating successful decomposition. The texture also changed from coarse to more crumbly and homogeneous. The treatment with EM4 showed faster fermentation and a more stable odor compared to the other treatments.

Keywords: Banana corm, banana fronds, solid organic fertilizer, physical properties

1. Introduction

Organic waste is the residue or waste material that can be recycled and originates from living organisms, such as food scraps, animal or human excrement, and plant waste. In other words, organic waste refers to materials derived from humans, animals, or plants (1). This type of waste can decompose naturally in the environment or through specific processes. Generally, organic waste breaks down into smaller particles and does not emit odors. However, if not managed properly, it can produce unpleasant smells and even become a source of disease (2).

Based on its type, organic waste is classified into two categories: wet and dry organic waste. Examples of wet organic waste include food leftovers and animal waste. On the other hand, examples of dry organic waste include wood stems, eggshells, and coconut shells (3). One effective method of utilizing organic waste is by processing it into fertilizer that is useful in the agricultural sector (2).

¹Department of Science Education, Faculty of Mathematics and Sciences, Universitas Negeri Malang, Indonesia

²Department of Geoscience and Civil Engineering, Graduate School of Natural Science and Engineering, Kanazawa University, Japan

^{*}Email (corresponding author: nugraheni.fmipa@um.ac.id

Banana plants (*Musa paradisiaca L.*) are tropical plants that thrive in warm climates and require full sunlight. These plants grow well in moist soils at altitudes of up to 2,000 meters above sea level. In Indonesia, banana plants are found in nearly all regions. While almost all parts of the banana plant can be used, the fruit is the most commonly utilized (4). Banana plants are monocarpic, meaning they die after bearing fruit (5). The dead stems then become waste that must be managed properly. The disposal of large and heavy waste materials, such as banana stems, can be costly, thus requiring economical and environmentally friendly solutions (6).

Banana corm is a type of organic waste from banana plants that is often abundant but underutilized. However, it has great potential as a primary component in compost production due to its rich macro- and micronutrient content (5). The corm, or stem part, of the banana plant contains important nutrients, including nitrogen (N), phosphorus (P), and potassium (K). Additionally, banana corm contains carbohydrates that can stimulate microbial growth in the soil. The corm contains 3087 ppm NO₃, 1120 ppm NH₄, 439 ppm P₂O₅, and 574 ppm K₂O. With its relatively high macronutrient content, the banana corm has the potential to serve as a source of potassium (K) in the form of organic material to enrich soil media for plant cultivation (7,8).

Another part of the banana plant is the banana frond. Banana fronds are commonly found in rural areas, especially during the post-harvest period. Typically, banana fronds are discarded after the plant bears fruit. The potential of banana frond waste is substantial in agrarian regions, especially in Indonesia (9). Banana is a common crop across many districts, with an estimated 800,000 banana trees planted in 2005 and a production assumption of 80%, which suggests approximately 640,000 fronds become waste. Banana fronds also contain a considerable amount of cellulose, yet their utilization has been suboptimal (10).

Rice is the staple food of the Indonesian population, consumed daily. Before cooking, rice is washed, and the resulting rice-washing water is often discarded as household waste without optimal use. In fact, rice-washing water benefits plants either as irrigation water or as organic fertilizer, reducing reliance on chemical fertilizers and offering a more economical alternative. This water contains important nutrients such as nitrogen (0.03%), phosphorus $(0.42\% P_2O_5)$, potassium $(0.06\% K_2O)$, organic carbon (0.46%), and minerals like calcium (14.25%), sulfur (0.03%), and iron (0.04%), which support plant growth. Moreover, its vitamin B1 content plays a role in plant metabolism, converting carbohydrates into energy and stimulating root growth during the seedling phase (11,12).

Information regarding the utilization of household waste as organic fertilizer remains limited. Proper household waste management includes converting it into value-added solid organic fertilizer (13). Furthermore, optimized waste processing contributes to environmental cleanliness. Household waste has the potential to be processed into liquid fertilizer, solid fertilizer, or even biogas (14). Various types of household waste, such as spinach stems, banana peels, water spinach stems, tea dregs, mangoes, leftover rice, papaya peels, eggshells, banana leaves, carrots, mustard greens, and onion skins, can be used as raw materials for compost production (15).

Effective Microorganism-4 (EM4) contains various beneficial microorganisms that accelerate the composting process and improve fertilizer quality by eliminating foul odors. These microorganisms include photosynthetic bacteria (*Rhodopseudomonas spp.*), which produce compounds essential for plant growth, and lactic acid bacteria (*Lactobacillus spp.*), which suppress harmful microbes and speed up the fermentation of organic matter. Yeasts

(Saccharomyces spp.) produce hormones and enzymes that support root growth, while Actinomycetes work synergistically with photosynthetic bacteria to enhance soil fertility. In addition, fermentation fungi help eliminate odors, prevent pests, and decompose complex compounds into beneficial substances for soil and plants (16). While EM4 is known to accelerate composting, there is scant research comparing its effectiveness with natural composting agents such as banana corms and fronds.

The quality of organic fertilizer is determined by its color, texture, and odor. Color is a key indicator in assessing the quality and maturity of solid organic fertilizer. During fermentation, color typically changes from brown to dark brown or blackish due to microbial activity—such as that of bacteria and fungi—that breaks down complex compounds like cellulose and lignin into simpler substances, resulting in a darker hue (17). Odor changes during the fermentation of solid organic fertilizer follow a distinct pattern: beginning with the fresh scent of raw materials, followed by an acidic or fermented smell, and ultimately transitioning to a fresh earthy aroma. The acidic or fermented odor is due to the activity of *Lactobacillus spp.*, which converts carbohydrates from molasses, rice-washing water, and EM4 into lactic acid. In contrast, the fresh earthy smell can be attributed to geosmin, a compound produced by soil bacteria such as *Actinomycetes* present in EM4. This earthy odor also indicates that the organic materials have been properly decomposed by the microbes (18).

Changes in texture during composting are marked by the transformation of tough and fibrous materials into smaller, crumbly particles. Mature compost feels loose and no longer sticks when held. This change in texture signifies microbial activity that has successfully decomposed organic matter into well-matured compost (19).

Despite the known nutrient content in banana corms and fronds, their comparative effectiveness in organic fertilizer production, particularly in enhancing physical properties such as odor and texture, remains underexplored. The influence of different organic waste materials on the odor and physical characteristics of compost, particularly in the context of household waste composting, is not well-documented. This represents a crucial knowledge gap, given the potential of odor and physical properties to affect compost usability and acceptance. This study aims to investigate the impact of variations in banana corm and banana fronds on the odor and physical properties of solid organic fertilizer produced from household waste. Furthermore, it seeks to identify the differences in odor and physical properties between solid organic fertilizers made using EM4 and those using banana corm and frond as base materials. This research is closely aligned with SDG 13: Climate Action, as it focuses on utilizing household waste that could otherwise contribute to greenhouse gas emissions and transforming it into solid organic fertilizer that can benefit agricultural practices.

2. Methods

This study employed an experimental method to examine the effectiveness of solid organic fertilizer produced from a combination of banana corm, banana frond, rice-washing water, and household waste dominated by rotten tape. The research was conducted on Tuesday, February 11, 2025, at the courtyard of Building B23, Department of Science Education, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang. The fermentation process lasted for approximately 10 days, from February 11 to February 21, 2025. The research methodology applied in this study was adapted from the work of Jiang et al.

(2023)(20), with several modifications introduced to suit the specific objectives and experimental conditions.

The materials used in this study included banana corm, banana frond, rice-washing water, household waste (consisting mainly of rotten tape, mixed with leftover vegetables and fruit peels), and EM4 (Effective Microorganisms 4) as an organic decomposition activator. The tools and equipment used consisted of four plastic bottles (as decomposition containers), a knife (for chopping raw materials), a weighing scale (for precise measurement), a stirrer (for mixing), a 500 mL beaker, a 50 mL measuring cylinder, and plastic gloves.

The objective of this study was to observe and describe the odor and physical characteristics—specifically color and texture—of solid organic fertilizer resulting from different treatment combinations. The research aimed to compare decomposition outcomes based on varying organic materials, particularly by contrasting fertilizers using banana corm, banana frond, and EM4. Odor observations were conducted by cautiously smelling the fermented fertilizer and recording the scent, such as earthy, acidic, or ammonia-like smells. Color observations involved visually identifying any changes, such as from dark brown to blackish hues, while texture was assessed by examining the consistency—whether it was coarse, smooth, or crumbly—to determine the level of material breakdown.

The fermentation was conducted for 10 days, during which daily gas release was performed to maintain optimal conditions. Before treatment, the banana corm and frond were chopped using a knife and then crushed using a stone to create coarse pieces suitable for decomposition. The experiment included four different treatments, each involving different compositions of materials. The treatments are detailed in the table 1.

Table 1. Composition and ratio of materials used in each treatment for solid organic fertilizer fermentation.

Treatment	Composition	Ratio	Weight (grams)
1	Banana corm, banana frond,	1:1:1:1	100g each
	rice-washing water,		
	household waste		
2	Banana frond, rice-washing	1:1:1	100g each
	water, household waste		
3	Banana corm, rice-washing	1:1:1	100g each
	water, household waste		
4	EM4, rice-washing water,	1/2:1:1	10g EM4, 100g rice water &
	household waste		waste

3. Results and Discussion

This study aims to evaluate the effect of varying combinations of banana corm and banana frond on the odor and physical properties of solid organic fertilizer. The fertilizer was produced by mixing key ingredients such as banana corm, banana frond, household waste, and rice-washing water in specific proportions. Additionally, a treatment involving EM4 as a bioactivator was applied to assess the effectiveness of the fermentation process. Observations were carried out over a period of six days, focusing on three parameters: odor, color, and texture.

3.1. Treatment 1 consisted of a mixture of banana corm, banana fronds, household waste, and rice washing water in a 1:1:1:1 ratio.

Treatment 1 consisted of a mixture of banana corm, banana fronds, household waste, and rice washing water in a 1:1:1:1 ratio is shown in Table 2.

Table 2. Physical properties of Treatment 1

Observation Period	Parameters		
	Odor	Physical Properties	
Day 1	At the beginning of the	The initial appearance	
(February 11th, 2025)	observation, a strong odor	showed the natural color of	
	resembling fermented cassava	the banana corm and frond,	
	(tape) and decomposing	with a rough, chopped	
	household waste, particularly	texture and clearly	
	leftover vegetables and fruits	distinguishable pieces of the	
	was clearly noticeable.	raw materials.	
Day 2	The unpleasant odor of	The color progressively	
(February 13th, 2025)	household waste and spoiled	darkened into deep brown,	
	cassava began to subside,	the texture became noticeably	
	giving way to an increasingly	crumblier, and initial signs of	
	dominant earthy aroma,	decay were observed,	
	accompanied by a subtle hint	including the appearance of	
	of acidity.	maggots.	
Day 4	The smell of soil became	The color turned dark brown	
(February 15th, 2025)	dominant, the acidic odor was	to almost black, with a very	
	no longer detectable, and the	crumbly and homogeneous	
	tape-like smell had almost	texture. A small number of	
	disappeared.	maggots began to appear,	
		moving slightly on the	
		surface of the sediment.	
Day 6	A strong earthy smell was	The compost showed a dark	
(February 17th, 2025)	dominant, with a slight hint of	brown to black coloration	
	ammonia. The number of	with a highly crumbly and	
	maggots began to decrease,	uniform texture. The	
	and some were observed	temperature was stable at	
	entering the pupal stage.	ambient conditions, and	
		several maggot pupae were	
		present.	

3.2. Treatment 2 consisted of a mixture of banana fronds, household waste, and rice washing water in a 1:1:1 ratio.

Treatment 2 consisted of a mixture of banana fronds, household waste, and rice washing water in a 1:1:1:1 ratio is shown in Table 3.

Table 3. Physical Properties of Treatment 2		
Observation Period	Parameters	
	Odor	Physical Properties
Day 1 (February 11th, 2025)	The initial odor detected was a strong smell of fermented cassava (tape) combined with other household waste, such as leftover vegetables and fruit peels.	The original color of the banana frond was visible, with a coarse chopped texture and noticeable pieces of raw materials.
Day 2 (February 13th, 2025)	The sweet smell of fermented cassava (tape) began to slightly diminish, while a fairly strong sour odor started to emerge.	The color turned dark brown, and the texture began to soften.
Day 4 (February 15th, 2025)	The acidic odor became dominant, while the smell of household waste and fermented cassava (tape) had almost disappeared. A slight earthy scent began to emerge.	The color turned dark brown with visible banana sheath fibers; the texture became crumbly, though some coarse fibers remained. A small number of maggots began to appear, moving on the surface of the compost.
Day 6 (February 17th, 2025)	A strong earthy smell was dominant, with a slight hint of ammonia. The number of maggots decreased, and some were observed entering the pupae stage.	The color turned dark brown to almost black, with a very crumbly and homogeneous texture. The temperature remained stable at room temperature. Several maggot pupae were observed.

3.3. Treatment 3 consisted of a mixture of banana corm, household waste, and rice washing water in a 1:1:1 ratio

Treatment 3 consisted of a mixture of banana corm, household waste, and rice washing water in a 1:1:1 ratio is shown in Table 4.

Table 4. Physical Properties of Treatment 3

Observation Period	Parameters	
	Odor	Physical Properties
Day 1	The initial odor detected was	The original color of the
(February 11th, 2025)	a strong smell of fermented	banana corm was visible,
	cassava (tape) combined with	with a coarse chopped texture
	other household waste, such	and noticeable pieces of raw
	as leftover vegetables and	materials.
	fruit peels.	

Observation Period	Parameters	
	Odor	Physical Properties
Day 2	The sweet smell of fermented	The color turned dark brown,
(February 13th, 2025)	cassava (tape) began to	and the texture began to
	slightly diminish, while a	soften.
	fairly strong sour odor started	
Day 4	to emerge. The acidic odor became	The color is dark brown with
(February 15th, 2025)	dominant, while the smell of	the tuber fibers still visible,
(1 Cordary 15th, 2025)	household waste and	the texture is crumbly but
	fermented cassava (tape) had	there are still coarse fibers.
	almost disappeared. A slight	Maggots began to be seen in
	earthy scent began to emerge.	small numbers moving on the surface of the sediment.
Day 6	The sour smell dominates, the	The color is dark brown with
(February 17th, 2025)	sweet smell of the tape is	the tuber fibers still visible,
	almost gone. A slight earthy	the texture is crumbly but
	smell began to smell. Maggots	there are still coarse fibers,
	are increasing.	the temperature is stable at
		room temperature. Maggots
		can be seen all over the
		fertilizer, but some have
		entered the pupal phase.

3.4. Treatment 4 consisted of a EM4 variation, household waste, and rice washing water in a $\frac{1}{2}$:1:1 ratio.

Treatment 4 consisted of a EM4 variation, household waste, and rice washing water in a $\frac{1}{2}$:1:1 ratio is shown in Table 5.

Table 5. Physical Properties of Treatment 4

Observation Period	Parameters	
	Odor	Physical Properties
Day 1	The initial odor detected was	The original color of the
(February 11th, 2025)	a strong smell of fermented	remaining household waste,
	cassava (tape) combined with	rough texture with pieces of
	other household waste, such	raw material still visible,
	as leftover vegetables and	slightly cloudy due to the
	fruit peels.	EM4 mixture.
Day 2	The smell of the tape began to	The color turned dark brown,
(February 13th, 2025)	decrease, the sour smell and	and the texture began to
	characteristic smell of EM4	soften.
	began to smell.	

Observation Period	Parameters	
	Odor	Physical Properties
Day 4	The characteristic smell of	The color turned dark brown
(February 15th, 2025)	EM4 dominates, the smell of	with visible banana sheath
	household waste and acid is	fibers; the texture became
	almost gone.	crumbly, though some coarse
		fibers remained. A small
		number of maggots began to
		appear, moving on the
		surface of the compost.
Day 6	The typical EM4 smell	The color turned dark brown
(February 17th, 2025)	dominates, the tape and acid	to almost black, with a very
	smell is almost gone, but there	crumbly and homogeneous
	is a slight smell of ammonia.	texture. The temperature
	Maggots are increasing.	remained stable at room
		temperature. Several maggot
		pupae were observed.

The fermentation process of organic fertilizer in this study showed significant development from day to day based on the four treatments used in the study. However, after 6 days of observation, none of the treatments had produced solid organic fertilizer that was completely mature and ready to use. On the first day, the first treatment (banana stump, banana stem, household waste, and rice washing water) showed a strong odor of tape and waste, a rough texture, and the ingredients were still clearly visible. The second treatment (banana stem, household waste, and rice washing water) had similar characteristics but with a slightly more fibrous texture. The third treatment (banana stump, household waste, and rice washing water) showed slightly more crude fiber than the other treatments. The fourth treatment (EM4, household waste, and rice washing water) began to show a distinctive fermentation odor from the beginning.

On the second day, the smell of tape began to decrease and a sour smell began to appear in all treatments. The color of the treatment with EM4 darkened faster than the other treatments. The first and third treatments experienced an earlier change in smell compared to the second treatment, while the combination of banana stems and stems still showed a more pungent smell before gradually decreasing. The texture slowly became crumblier, but was still rough and the material had not fully decomposed. On the fourth day, the sour smell became stronger in all treatments. The smell of tape and waste residue began to decrease, especially in the treatment with EM4 which stabilized the fermentation smell faster (16). The texture slowly became smoother, but coarse fibers were still visible in the first and third treatments. Maggots began to appear in small numbers on the surface of the sediment, especially in the treatment without EM4.

On the sixth day, the fermentation odor was more stable with the sour odor starting to disappear. This is in accordance with the findings which stated that decomposed organic waste will experience a change in odor along with the activity of decomposing microbes (2). In addition, Actinomycetes bacteria and other microbes that play a role in the final stage of decomposition begin to dominate, causing the odor to change to be more neutral (3,18). The

texture of the fertilizer is increasingly crumbly and more homogeneous, especially in the EM4 treatment which showed the fastest change (16). However, all treatments still showed the presence of coarse fibers and materials that were not fully decomposed. Maggots began to appear in greater numbers throughout the fertilizer, with some starting to enter the pupal phase. The treatment without EM4 still showed coarse fibers that were not fully decomposed, especially in the second treatment.

During the initial two days of fermentation, odor intensity increases due to the metabolic activity of microorganisms that utilize the available nutrients in domestic wastewater for their survival and growth. However, between days 4 and 6, the odor decreases as the nutrient content in the household waste becomes depleted. The addition of rice water can intensify odor generation, as it promotes bacterial growth. The proliferating bacteria subsequently produce malodorous gases such as hydrogen sulfide, ammonia, mercaptans, alcohol ester, aldehydes ketones and other volatile compounds (20,21).

At the end of the observation, no treatment had truly produced solid fertilizer that was ready for use. All treatments were still in the active fermentation stage with remaining crude fiber that had not been completely decomposed. The treatment with EM4 showed the fastest development in texture homogenization and odor stabilization, but still required a longer time to be ready for use as solid organic fertilizer. Other treatments still showed significant crude fiber and the presence of maggots in quite large numbers, indicating that the decomposition process was not yet complete. These results indicate that the treatment with EM4 accelerated fermentation, but was not enough to produce solid organic fertilizer that was mature within 6 days. Further observation is needed to determine the optimal fermentation time until the fertilizer is truly ready for use.

The results of this study indicate that fermentation involving banana stems and EM4 results in a change in odor from the smell of tape and garbage to the typical smell of fermentation, as well as a darker color. This is in accordance with the theory that the fermentation process of organic fertilizer is characterized by a change in odor due to microbial activity that decomposes complex organic compounds into simpler substances (18). In addition, the color change from dark brown to blackish brown indicates that the decomposition process is running optimally. The activity of microorganisms in organic fertilizer causes the degradation of lignin and cellulose, which results in a color change (17). The change in color of composting material serves as an indicator of stability during the composting process. A bright brown color at the initial stage suggests that the composting process is actively occurring. During this phase, insects are often observed around the compost, as the lighter color tends to attract them. Once stability is achieved, the compost gradually turns dark or black, accompanied by a noticeable reduction in odor (22,23)

Changes in the texture of the fertilizer that are increasingly crumbly and homogeneous also indicate that the decomposition of organic materials is going well. However, based on observations, the fertilizer produced is not fully mature and requires further fermentation before it is ready for use. Good fermentation produces fertilizer with a loose and non-clumping texture, which is a sign of fertilizer maturity (24). Thus, this study supports previous findings which state that the use of organic waste as a fertilizer material can improve the quality of the fertilizer produced, but the fermentation time must be extended so that the results are truly optimal and ready for use (2).

Conclusion

Based on the results of the research that has been conducted, it can be concluded that the variation of the use of banana corms, banana fronds, organic household waste, rice washing water, and the addition of EM4 have a significant effect on changes in the odor and physical properties of solid organic fertilizer during the fermentation process. Treatment with the addition of EM4 showed a faster fermentation process, marked by a more stable odor change, darker color, and a more crumbly and homogeneous texture compared to other treatments. However, all treatments were still in the active fermentation stage until the sixth day, and had not produced fertilizer that was fully mature and ready to use. Therefore, additional fermentation time is needed so that the decomposition process of organic materials can take place perfectly and produce solid organic fertilizer with optimal quality.

Funding

This research received no external funding.

Acknowledgments

The author would like to express his deepest gratitude to the all parties in the Department of Science Education, Universitas Negeri Malang, who have provided facilities and support during the implementation of this research.

Conflicts of Interest

The authors declare no conflict of interest

References

- 1. Astie RRYJ, Triyono B. Studi Potensi Limbah Organik Pujasera Kampus sebagai Pakan Maggot Black Soldier Fly (BSF). Pros Ind Res Work Natl Semin. 2024;
- 2. Mufarrihah, I. Lazulfa, I. Andriani A. Pemanfaatan Limbah Organik Bekatul Menjadi Pupuk Cair Sebagai Solusi Pupuk Pengganti Untuk Pertanian. Din J Pengabdi Kpd Masy. 2024;4(1):1–5.
- 3. Kiyasudeen S K, Ibrahim MH, Quaik S, Ahmed Ismail S. Prospects of Organic Waste Management and the Significance of Earthworms. Prospect Org Waste Manag Significance Earthworms. 2016;1–21.
- 4. Rosariastuti, R., Sumani, S., & Herawati A. Pemanfaatan batang pisang untuk aneka produk makanan olahan di Kecamatan Jenawi, Karanganyar. PRIMA J Community Empower Serv. 2018;2(1):21–9.
- 5. Bahtiar, S. A., Muayyad, A., Ulfaningtias, L., Anggara, J., Priscilla, C., & Miswar M. Pemanfaatan kompos bonggol pisang (Musa Acuminata) untuk meningkatkan pertumbuhan dan kandungan gula tanaman jagung manis (Zea Mays L. Saccharata). Agritrop J ilmu-ilmu Pertan (journal Agric Sci. 2016;14(1):23–32.
- 6. Meilani, S. S., Susyani NE. Pemanfaatan Kembali Limbah Batang Pisang Menjadi Kompos. Agroindustrial Technol J. 2021;5(2):13–26.
- 7. Sari, P. K., Lekat, A., Fajri M. Pemanfaatan Batang Semu Pisang Sebagai Media Tumbuh dengan Berbagai Sumber Unsur Hara Terhadap Pertumbuhan Pre Nursery Kelapa Sawit (Elaesis guinensis Jacg). J Appl Agric Sci Technol. 2017;1(1):37–47.
- 8. Islam MS, Khatun MF, Alam MK, Haque MA, Anik MFA, Bashar HMK, et al. Effect of Banana Pseudostem Derivative Compost and Foliar Spray of Sap on Nutrient

- Acquisition, Yield and Sugar Content of Corn in Tropical Soil. J Soil Sci Plant Nutr. 2024;24(3):5505–17.
- 9. Amilia, E., & Hidayanti N. Pengolahan Pemanfaatan Pelepah Pisang Menjadi Keripik Sebagai Makanan Sehat Dalam Upaya Peningkatan Perekonomian Di Kampung Kemeranggen Kelurahan Taman Baru Kecamatan Taktakan. MULIA (Jurnal Pengabdi Kpd Masyarakat). 2022;1(2):62–6.
- 10. Nashar N. Prospek Jenis Tanaman Pisang Untuk Dilakukan Oleh Kelompok Usaha Tani. J Ekon Perbank Syariah. 2015;2(1):91–116.
- 11. Ariyanti M. Air cucian beras sebagai sumber nutrisi alternatif bagi tanaman perkebunan. 2021.
- 12. Bashir, R., Iqbal, S. A. Thiamine (vitamin B1) helps to regulate wheat growth and yield under water limited conditions by adjusting tissue mineral content, cytosolutes and antioxidative enzymes. Plant Growth Regul. 2023;101(6):629–42.
- 13. Yetri, Y., Nur, I., Hidayati R. Produksi Pupuk Kompos dari Sampah Rumah Tangga. J Katalisator. 2018;3(2):77–81.
- 14. Nur, T., Noor, A.R., Elma M.). Pembuatan Pupuk Organik Cair dari Sampah Organik Rumah Tangga dengan Penambahan Bioaktivator EM4 (Effective Microorganisms). Konversi. 2016;5(2):5–12.
- 15. Deny S& E. "Membangun Sinergi antar Perguruan Tinggi dan Industri Pertanian dalam Rangka Implementasi Merdeka Belajar Kampus Merdeka "Analisis Beberapa Hara Kompos Limbah Rumah Tangga sebagai Pupuk Organik Deny. Semin Nas dalam Rangka Dies Natalis ke-45 UNS Tahun 2021 Fak Pertan Univ Muhammadiyah Jakarta. 2021;5(1):495–508.
- 16. Sari, M. W., Alfianita S. Pemanfaatan batang pohon pisang sebagai pupuk organik cair dengan aktivator EM4 dan lama fermentasi. J Tedc. 2019;12(2):133–8.
- 17. Chan, S. R. O. S., Achmad, B. S., & Ferdinant F. Pemanfaatan Berbagai Limbah Organik Sebagai Bahan Baku Pembuatan Kompos Menggunakan Decomposer M21. J Agrium. 2023;20(4):331–5.
- 18. Andraskar J, Yadav S, Kapley A. Challenges and Control Strategies of Odor Emission from Composting Operation. Appl Biochem Biotechnol. 2021;193(7):2331–56.
- 19. Ana Khalishaa, Dwi Novanda Sari, Stefina Liana Sari, Rani Sukmadewi, Adi Surya Pradipta ANI. Acceleration of Organic Waste Decomposition: A Comparative Study of ASEM-7 Decomposer Efficiency on Several Organic Wastes. J Appl Agric Sci Technol. 2024;8(3):375–83.
- 20. Jiang Y, Huang J, Luo W, Chen K, Yu W, Zhang W. Prediction for odor gas generation from domestic waste based on machine learning. 2023;156(August 2022):264–71.
- 21. Nie E, Wang W, Duan H, Zhang H, He P, Lü F. Science of the Total Environment Emission of odor pollutants and variation in microbial community during the initial decomposition stage of municipal biowaste. 2023;861(August 2022):1–9.
- 22. Mbuligwe SE, Kassenga GR, Kaseva ME, Chaggu EJ. Potential and constraints of composting domestic solid waste in developing countries: findings from a pilot study in Dar es Salaam, Tanzania. 2002;36(2131):45–59.
- 23. Ashik M, Khan I, Ueno K, Horimoto S, Komai F. CIELAB color variables as indicators of compost stability. 2009;29:2969–75.

24. Asbai, Z., Boutaleb, F., Doublali, F. E., Mrabet, O., Hadidi, M., Bahlaouan, B., ... Boutaleb N. Sustainable approach for nutrient release control in organic fertilisers by using phosphogypsum. Int J Environ Stud. 2024;81(2):808–25.

CC BY-SA 4.0 (Attribution-ShareAlike 4.0 International).

This license allows users to share and adapt an article, even commercially, as long as appropriate credit is given and the distribution of derivative works is under the same license as the original. That is, this license lets others copy, distribute, modify and reproduce the Article, provided the original source and Authors are credited under the same license as the original.

